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Executive Summary 

This document corresponds to deliverable D4.2, “Complete design and initial evaluation of developed 
functions" of the Horizon 2020 5G-PICTURE project. To implement the functionalities required by the concepts 
proposed by 5G-PICTURE, a set of technical components was identified in deliverable D4.1, together with the 
necessary state of the art analysis per technology domain. This deliverable aims to provide the complete 
specification of these network functions (developed in the context of Task 4.1, Task 4.2 and Task 4.3 activities), 
as well as an initial evaluation of their performance. The technical components are relevant to a) Virtual 
Network Functions (VNFs) and Physical Network Functions (PNFs) for dynamic 5G-RAN deployments (Task 
4.1); b) Transport Slicing for converged wired/wireless FH/BH networks and integration with 5G-PICTURE 
orchestrator (Task 4.2); and c) PNFs and VNFs to support synchronisation services in converged FH/BH 
networks (Task 4.3). The technical components description presented in this document will identify what is the 
status  of the development and evolution of the technology enablers presented in 5G-PICTURE. 

In the case where a platform for data plane programmability, programming models and hardware abstractions 
developed in WP3 is used to support a network function deployment, the necessary pointer to deliverable D3.2 
is introduced. In the case where no specific/specialised hardware platform development was required to 
support the deployment of some network functions, the details of the software solution are described d in this 
document. In this deliverable we also provide the technical means  through which the designed network 
functions are exposed and become available to the orchestration and control plane comprising the 5G-
PICTURE Operating System (OS) developed in WP5.  

For each network function, the complete performance evaluation together with a service chain integrating some 
of the developed functions in Task 4.1, Task 4.2 and Task 4.3, namely network functions relevant to functional 
splits, transport network slicing, and synchronisation primitives will be presented in deliverable D4.3. 
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1 Introduction 

The 5G-PICTURE project focuses on developing integrated transport network solutions, addresses limitations 
and support novel Disaggregated-RAN (DA-RAN) and Cloud-RAN (C-RAN) architectures, as they are defined 
by 3GPP [1][2]. 5G-PICTURE proposes a novel architecture based on the flexible functional splits design 
paradigm. The optimal “split” can be flexibly decided, based on a number of factors such as the transport 
network and the service characteristics. 

The project adopts the concept of transport network slicing, resource and service virtualisation across 
technology domains, while another dimension is related to the development of a unified programmable control 
and management framework called 5G OS, used to coordinate the underlying heterogeneous technology 
domains and support orchestration and end-to-end service provisioning across the various infrastructure 
domains. This deliverable is related to all Tasks in WP4, namely VNFs and PNFs for dynamic 5G RAN 
deployments (Task 4.1), Transport slicing for converged wired-wireless FH/BH networks and integration with 
5G-PICTURE. Orchestrator (Task 4.2), and PNFs and VNFs to support synchronisation services in converged 
FH/BH networks (Task 4.3). The goal of deliverable D4.2 is twofold. On one hand, this deliverable aims to 
analyse and evaluates a number of technical components defined in deliverable D4.1 related to each task. On 
the other hand, it aims to provide insights on how each technical component can be integrated within the 5G-
PICTURE 5G-OS delivered in the context of WP5 activities. 

In deliverable D4.1 [3], a number of 16 technical components have been described by the project partners. 
Table 1-1 shows the presented and analysed technical components in deliverable D4.2. Three technical 
components regarding synchronisation services are also depicted. However these were reprioritised and will 
be presented in deliverable D4.3. 

For each technical component in deliverable D4.2 the detailed aspects related to the project are investigated. 
This investigation essentially looks into the description of how the technical component functions are 
implemented and the used evaluation methodology and experimentation/evaluation results related to KPIs 
declared in deliverable D4.1 [3]. 

Table 1-1: Summary table with components presented/status. 

 Technical Component Delivered In 

 Section 2: VNFs and PNFs for Dynamic 5G-RAN deployments 

1 Optimal functional split D4.2 

2 Implementation of functional split using OpenAirInterface (OAI) platform D4.2 

3 Flexible Functional Splits D4.2 

4 
Disaggregated Heterogeneous Base Station functionality  

(declared as LTE/5G RAN as VNFs implementation in D4.1) 
D4.2 

5 Wireless Transport Technologies with Functional Split Support D4.2 

 Section 3: Transport slicing for converged wired-wireless FH/BH networks 

6 Time Shared Optical Network (TSON)  D4.2 

7 Flex-E D4.2 

8 X-Ethernet D4.2 

9 Segment routing for enhanced VPN D4.2 

10 Open Packet Processing (OPP) D4.2 

11 
Solution based on IEEE 802.11 technologies, both for access and BH (802.11ac 
modems) 

D4.2 

 Section 4: PNFs/ VNFs to support synchronisation services in converged FH/BH 

12 IEEE 1588 over IEEE  802.11ad D4.2 

13 IEEE 1588 over off-the-shelf IEEE 802.11ac D4.3 

14 Heterogeneous synchronisation transport testbed  D4.3 

15 Synchronisation harmonizer (Evaluate in D4.3) D4.3 

16 Over-the-air synchronisation for FH networks D4.3 



 

5G-PICTURE Deliverable  

 

H2020-ICT-2016-2017-762057 Page 13 of 104 30. Nov. 2018 

 

In the case that platforms/APIs built in the context of WP3 are used to implement a function a pointer to 
deliverable D3.1 [4] or forthcoming deliverable D3.2 [5] is provided, while if no platform from WP3 is used, a 
description of the platform or used is described inline. Furthermore, for each technical component we elaborate 
how its functions can be packaged for the 5G OS, sketching the descriptor that will be used to onboard this 
function to the 5G OS. 

Note that technical component 14 (Table 1-1) refers to the wireless testbed of the NITOS facility that will be 
exploited for the evaluation of the IEEE 1588 (PTP) synchronisation technique. Other technical components 
will be tested in the NITOS testbed and evaluated over multiple wireless technologies (Sub-6 GHz and 
mmWave), using either the Sub-6 GHz or 60 GHz spectrum. Furthermore, integration of the synchronisation 
harmonizer that is able to work across the different domain technologies is planned for deliverable D4.3 when 
the relevant WP3 platforms are ready to be interconnected and feature IEEE 1588. 

Organisation of the document 

Section 2 describes the technical components for VNFs and PNFs for Dynamic 5G-RAN deployments. 

Section 3 describes the technical components for transport slicing for converged wired-wireless FH/BH 
networks. 

Section 4 describes the technical components for PNFs and VNFs to support synchronisation services in 
converged FH/BH networks. 

Section 5 presents integration plans. 

Section 6 concludes the deliverable and describes the next steps. 
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2 VNFs and PNFs for Dynamic 5G-RAN deployments 

In this section, we extend our initial study among several technical components introduced in deliverable D4.1 
[3] for the 5G-RAN aspect. The design and development of these RAN network functions aim to provide the 
radio access functionality required by the 5G-PICTURE infrastructure provider exploiting telecommunication 
and cloud resources, while also they can be exposed to 5G-PICTURE tenants in a dynamic and efficient 
manner as a service. Notice that we reuse some applied terminologies and technologies introduced in 
deliverable D4.1 [3], such as the central unit (CU), distributed unit (DU), radio unit (RU), fronthaul (FH), midhaul 
(MH), and the defined RAN functional splits by the third generation partnership project (3GPP) and enhanced 
common public radio interface (eCPRI). To recap these introduced terminologies and compare with the 
terminologies adopted by different organisations, we provide an example RAN deployment topology in Figure 
2-1 with the three-tier entities: RU, DU and CU. We can observe that different terminologies are applied by 
different standardisation bodies and industry fora as summarised in the table shown in Figure 2-1, such as 
3GPP [6][7][1], next generation mobile network (NGMN) alliance [8], CPRI forum [9], next generation FH 
interface (NGFI) [10], IEEE 1914 [11], xRAN forum [12], telecom infra project (TIP) [13]. Moreover, there are 
two tiers of possible functional splits between these entities, i.e., the high level split (HLS) between DU and 
CU and the low level split (LLS) between RU and DU. Currently, 3GPP standardizes the F1/V1 interface 
between the radio link control (RLC) and packet data convergence protocol (PDCP) sublayers for 5G/4G, as 
the solution for the HLS. On the other hand, several possible physical layer functional splits (e.g., 3GPP 
functional splits option 6, 7, and 8 defined in [14]) are still surveyed for the LLS. 

 

Figure 2-1: RAN network topology for three-tier RAN entities. 

Based on the above recap on the RAN domain technologies, in the following paragraphs, we elaborate on the 
design and development status of the technical components introduced in deliverable D4.1 [3]. An overview 
of these components is as follows. In subsection 2.1, we focus on the low level physical layer functional split 
and introduce the derivation of optimal functional split of the RAN entities for specific use case. In subsection 
2.2, we update the development status on the functional split over the OpenAirInterface (OAI) platform. In 
subsection 2.3, the control framework for flexible functional split is updated with preliminary results. Moreover, 
we provide the development and evaluation status when applying heterogeneous radio access technology 
(RATs), such as Wi-Fi and LTE, at the DU level in subsection 2.4. We provide the latest evaluation outcome 
when applying Sub-6 GHz technologies as the FH transportation in subsection 2.5. For each technical 
component, we further detail in terms of (1) how these derived VNFs/PNFs can utilise the underlying 
programmable platforms and APIs provided by tasks of WP3, and (2) how these functions can be packed and 
managed by the 5G OS developed in WP5. Note that some technical components will be developed 
continuously, and thus the more updates will be given in the future deliverable D4.3. 
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2.1 Technical Component 1: Optimal functional split 

2.1.1 Summary Description 

Massive MIMO is a promising technology to improve the spectral efficiency (SE) and energy efficiency (EE) of 
transmission in 5G RAN. It involves equipping the transmitter with large number of antennas, which enables it 
to generate narrow, high-energy beams and to serve multiple users at the same time [15]. Despite its many 
advantages, providing a transport link to massive MIMO-based RUs is a challenge. CPRI-based FH is not 
feasible as the transport requirements would impose an excessively high transport network data 
rate.Therefore, split 7-2 is considered for massive MIMO in which beamforming is moved fully or partially to 
RU. In this technical component, we optimize the access network parameters such as transmit powers of UEs 
and downlink beamformers for split 7-2 to improve the SE and EE. 

2.1.2 Used programmable platforms and APIs 

The active antenna distributed unit (AADU) from Airrays [4] is the platform intended for this technical 
component. It is a rectangular antenna array with up to 64 antenna elements. The elements are spaced 0.5 λ 
and 0.7 λ in the horizontal and vertical direction, respectively. Since the AADU is still under development, the 
integration results are not provided in this deliverable and will be reported in deliverable D4.3. The 
beamforming algorithms developed in this technical component will be implemented to some extent in the 
massive MIMO but not fully owing to the lack of channel estimation on the platform as it is done at the BBU, 
required interfaces, and limited computational capability. Loading the beamforming weights that are computed 
offline/in BBU is being explored.  

2.1.3 Function Design/Implementation/Evaluation 

We now discuss the design of algorithms to optimise the downlink transmit powers of UEs and partial 
beamforming at DU and RU. We then present some initial evaluation results. 

Optimising Allocation of UE Transmit Powers 

As mentioned before, beamforming is offloaded to RU in split 7-2. This avoids the scaling of FH capacity with 
the number of antennas. However, the gains from coordinated beamforming across multiple cells is limited as 
the beamforming weights are computed by RU. Therefore, we focus on optimising the powers assigned to 
different UEs based on the long-term channel gains. This avoids the need for feeding the channel gains to DU 
thus, further reducing the FH overhead. 

Figure 2-2 (a) shows the system model, which involves a DU, multiple massive MIMO-enabled RUs, and 
several UEs. The RUs are connected to DU through capacity-limited FH. As shown in Figure 2-2 (b), each link 
between RU and UE is characterised by its signal-to-interference-plus-noise ratio (SINR) and the power 
assigned to the UE (Pk). Also, note that the data rate to any RU is constrained to less than the capacity of the 
FH link denoted as C, which is determined by the FH technology. For this system, we formulate SE and EE 
maximisation problems (Figure 2-3): 

 

Figure 2-2: System model. a) Multi-cell massive MIMO cellular system (left) b) An individual RU 
(right). 
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Figure 2-3: SE and EE maximisation problems. 

These optimisation problems are non-convex and finding optimal UE powers is hard. We employ successive 
convex approximation (SCA) framework to find the optimal transmit powers. In it, a simpler convex optimisation 
problem is solved in an iterative manner. The complexity of the algorithm is polynomial in the number of users 
and the algorithm monotonically improves the SE/EE and finds a local optimum. The details of the algorithm 
can be found in [16]. 

Simulation Results: We simulate a 7-cell hexagonal cellular layout with wrap around and 70 UEs are randomly 
dropped in the network area. We consider time division duplex transmission. The pilot sequences for uplink 
training are allocated randomly to UEs and are reused in each cell. For beamforming at RU, we consider 
maximal ratio transmission (MRT) and zero forcing (ZF). While the former tries to maximise the received signal 
power at UE, the latter attempts to cancel out interference from other UEs in the cell. We compare the 
performance of the proposed SCA approach against a baseline scheme in which transmit powers are not 
coordinated across RUs. 

Figure 2-4 (a) and Figure 2-4 (b) show the results of network throughput, which is the sum of the users’ SEs 
averaged over several channel realisations for MRT and ZF beamforming, respectively. We see that the SCA 
approach achieves a significantly higher network throughput than the baseline scheme. For example, the SCA 
approach improves the throughput by 54%, 29%, and 25% at Cplc = 200, 300, and 400 Mb/s, respectively, for 
MRT beamforming. The gains for ZF beamforming at Cplc = 500, 700, and 900 Mb/s are 59%, 38%, and 34%, 
respectively.  

We see that the network throughput increases as the FH capacity increases before saturation. This is because 
the FH constraints become more relaxed as the FH capacity increases and eventually, the throughput is 
determined only by the power constraints. We also see that ZF beamforming achieves a significantly higher 
throughput than MRT beamforming for all the schemes. This is because the former manages the interference 
better than the latter. 

 

Figure 2-4: Network throughput as a function of FH capacity a) MRT (left) b) ZF (right). 
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Figure 2-5: Energy efficiency as a function of FH capacity a) MRT(left) b) ZF(right). 

 

Figure 2-6: Block diagram of a massive MIMO system with two-stage beamforming. 

Figure 2-5 (a) and Figure 2-5 (b) show the energy efficiency results of MRT and ZF beamforming, respectively. 
We see that the SCA approach achieves a significantly higher EE than the baseline scheme. For example, the 
SCA approach improves EE by 49%, 53%, and 122% at Cplc = 200, 300, and 400 Mb/s, respectively, for MRT 
beamforming. The gains for ZF beamforming at Cplc = 400, 600, and 800 Mb/s are 73%, 56%, and 91%, 
respectively. 

For the SCA approach, we see that EE increases as Cplc increases before saturating. However, for the baseline 
scheme, EE first increases and then decreases. This is because the RUs transmit at higher powers as FH 
capacity increases. Beyond a certain point, however, this increase in transmit power does not translate to an 
increase in sum rate. 

Two-stage Beamforming 

Two-stage beamforming is an approach to obtain some of the gains of coordinated beamforming without 
overwhelming the FH link. This is achieved by using coordinated beamforming in one stage. In addition, it 
lowers the computational requirements. As the name implies, beamforming is performed in two stages, partly 
before the IFFT operation and partly after. In the latter, beamforming is applied to the time-domain I/Q samples. 
Hence, it is also referred to as time-domain beamforming. This stage of beamforming is a function of only the 
long-term channel gains; hence, needs to be adapted at a much slower time-scale reducing the computational 
requirements at RU. On the other hand, the beamforming before the IFFT operation is different for different 
physical resource blocks (PRBs). Hence, it is referred to as frequency-domain beamforming. The block 
diagram is shown in Figure 2-6. 

The FH overhead resulting from sending beamforming weights is higher than a fully distributed beamforming 
but lower than a fully coordinated beamforming. This is because the effective channel matrix dimension is 
lowered by time-domain beamforming. 

Designing Beamforming Matrices: For frequency-domain beamforming, we employ the signal-to-leakage-plus-
noise-ratio (SLNR) beamforming. Here, the matrices are computed from the lower dimensional effective 
channel, which is the combination of time domain beamforming and the actual channel matrix. For time-domain 
beamforming, we employ the Eigen vectors of the sum of the channel covariance matrix of UEs as the columns 
of the beamforming matrix [17]. This choice of beamformers relies on the fact that the channel covariance 
matrix is the same for all the PRBs. 



 

5G-PICTURE Deliverable  

 

H2020-ICT-2016-2017-762057 Page 18 of 104 30. Nov. 2018 

 

 

Figure 2-7: Performance results for two-stage beamforming a) Network throughput(left),  
b) UE rate CDF (right). 

The RU may not know the channel covariance matrix of UEs. Hence, we develop a method to estimate the 
time-domain beamforming matrix from uplink Sounding Reference Signal (SRS) measurements. To have an 
appropriate estimation, we assume channel reciprocity. It can be shown that the covariance matrix of the uplink 
received signal is the sum of channel covariance matrices of UEs and a scaled identity matrix due to thermal 
noise. Hence, the Eigen vectors of the uplink received signal is same as the Eigen vectors of the sum of the 
channel covariance matrix of UEs. We use sample covariance matrix, which can be efficiently computed from 
uplink measurements, for the covariance matrix of uplink received signal. 

Simulation Results: We simulate single-cell network with L=96 antenna RU serving K=8 UEs in the downlink. 
A standard channel covariance model for massive MIMO antenna array is considered [18]. We compare the 
performance of two-stage beamforming against single-stage SLNR beamforming, which is an upper limit on 
the performance for the former. 

Figure 2-7 (a) plots the network throughput as a function of the downlink transmit power. We see that 
performance of two-stage beamforming increases as the number of time-domain I/Q streams increases and 
approaches the single-stage SLNR curve. When the number M of time-domain I/Q streams increases to M=60, 
the loss compared to single-stage SLNR is only 3%. The network throughput with estimated covariance matrix 
is lower than the case covariance matrix is perfectly known. However, this loss decreases as M increases. 
Similar trends are observed in the user rate CDFs in Figure 2-7 (b). 

2.1.4  Packaging for the 5G OS 

The beamforming and UE power allocations for AADU are control plane functions. The AADU as a PNF is 
configured with the NETCONF server in it and a NETCONF client at the CU. The service descriptor includes 
RF transmit power, number of carriers used, number of turned ON antenna elements (RSUs), compute and 
storage capability of AADU. 

2.2 Technical Component 2: Implementation of functional split using the OAI platform 

2.2.1 Summary Description 

As for the second technical component, we focus on the implementation of functional split using the OAI 
platform. Currently, following functional splits are now supportable in the OAI platform: 

1. Low physical functional split: 3GPP functional split option 8 and option 7-1. 

2. Functional split between physical layer (PHY) and medium access control (MAC) layers: 3GPP 

functional split option 6, also known as nFAPI defined by the small cell forum [19]. 

3. High level functional split between PDCP and RLC: 3GPP functional split option 2, also known as F1 

functional split defined in [20][21]. 

Since we already detail our implementation work on the 3GPP split option 8, 7-1 and 6 in the deliverable D4.1 
[3]; therefore, we here present the updated status only in terms of (a) the compression scheme for the low 
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physical functional split, and (2) the latest implementation on the F1 interface aligned with the recent 
standardisation activities by 3GPP. 

2.2.2 Used programmable platforms and APIs 

These functional splits are implemented over the OAI platform, through which the RAN functions can be 
executed in the x86 infrastructure with the connected Software-Defined Radio (SDR) in order to connect the 
commercial-of-the-shelf (COTS) user equipment (UE). To program the applied functional split, the 
corresponding configuration files for each functional split is used. Note that the deployment can either be split-
specific of flexible-split deployment. The former one only deploys necessary functions at the corresponding 
entity, while the later one deploy all network functions to support a flexible change of functional split between 
RAN entities. 

2.2.3 Function Design/Implementation/Evaluation 

 Functional split development update over F1 interface 

Currently, 3GPP has standardised the F1 interface in terms of how to realise the disaggregated deployment. 
More specifically, this interface can be decomposed into two different interfaces: (1) F1 control plane (F1-C), 
and (2) F1 user plane (F1-U) interfaces. 

The F1-C protocol relies on the F1AP (F1 application protocol) over the underlying stream control transmission 
protocol (SCTP) and Internet protocol (IP). It can provide several functionalities: (a) interface management 
(e.g., F1 setup, reset, error indication, gNB-DU/CU configuration update), (b) system information management, 
(c) UE context management (e.g., UE context setup, release, modification and so forth), (d) RRC message 
transfer, (e) paging, (f) warning message transfer. On the other hand, the F1-U uses the GPRS tunnelling 
protocol user plane interface (GTP-U) over user datagram protocol (UDP) and IP in order to transfer user data 
or do the flow control. In the following, we show how the F1 interface is used to establish the UE initial access 
in Figure 2-8. We can see that the gNB-DU and gNB-CU will exchange the information in between to establish 
the RRC connection. In particular, the RRC message will be encapsulated and exchanged in both downstream 
and upstream directions (cf. steps 2, 3, 6, 13, 14 and 17), and the UE context can be setup using the steps 9 
and 11. 

 

Figure 2-8: UE initial access procedure from [21]. 
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To show our implementation outcome, the results of the corresponding UE initial access steps is shown in 
Figure 2-9 using the Wireshark trace gathered by the deployed CU entity. We can observe that after 
F1SetupRequest and F1SetupResponse messages, the corresponding RRC message transfers are initiated 
between CU and DU (i.e., InitialULRRCMessageTransfer, DLRRCMessageTransfer and 
ULRRCMessageTransfer) to setup the RRC connection between the user and the CN. And then the RRC 
messages can be exchanged between CU and DU consecutively. To sum up, the UE can now use our 
implemented F1 interface to establish the UE connection, as the legacy monolithic BS. 

As the next step, we plan to add some further extensions to our current implementation work: 

 Current implemented F1 interface is done over the LTE system. According to the current study by 

3GPP in [22], the extra V1 interface will be introduced to the LTE system. 

 Some messages over the F1 interface will be further implemented according to the latest 

standardisation activities. 

 Current F1-U interface is implemented over the protobuf messages over the UDP/IP protocol, and we 

expect future development to include the standardised GTP-U transportation over the top. 

To this end, in the deliverable D4.3, we will explore more results for such functional split implementation over 
the OAI platform. 

 

Figure 2-9: Implementation results of the F1-C interface over the OAI platform. 
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 Data sample compression over the low physical functional split 

Moreover, we explore the enhancement of the A-law compression for the low physical functional split. As we 
previously explained in deliverable D4.1, the data sample compression can bring significant gains to reduce 
the FH data rate; however, it will also introduce extra impact on the user plane performance. In practice, such 
A-law compression approach will compress the incoming 16-bit sample into an 8-bit output (1 sign bit, 3 
exponent bits and 4 mantissa bits), and then expand it back to the original 16-bit level. However, it will introduce 
severe expansion error when the input signal amplitude is large as summarised in Table 2-1. For instance, 
when the input signal is either from -215 to -214-1 or from 214 to 215-1, the largest expansion error will generate 
512/215 = 1.56% signal distortion. Although this high-amplitude input signal rarely appears in the average case; 
the associated distorted value will impact all other sub-tones significantly due to the spreading effect introduced 
by the (inverse) digital Fourier transform (DFT/IDFT) operations. Hence, all symbols of the same time index 
will be influenced by this large expansion error. What is worst is that such high-amplitude inputs will show up 
more frequently due to the aforementioned high peak-to-average power ratio (PAPR) characteristic for the 
orthogonal frequency division multiplexing (OFDM). To this end, we investigate some possible approaches 
that can be applied for the improvements, while still maintaining the benefits brought by the FH data sample 
compression scheme, e.g. FH throughput reduction and few compression/decompression time. 

Table 2-1: Original A-law compression scheme. 

Input (16 bits) Output (8 bits) Expansion error 

From To Sign (1 bit) Exponent (3 bits) Mantissa (4 bits) Minimum Maximum 

-215 -214-1 

1 

7 

From 0 to 15 

-511 512 

-214 -213-1 6 -255 256 

-213 -212-1 5 -127 128 

-212 -211-1 4 -63 64 

-211 -210-1 3 -31 32 

-210 -29-1 2 -15 16 

-29 -28-1 1 -7 8 

-28 -1 0 -7 8 

0 28-1 

0 

0 -7 8 

28 29-1 1 -7 8 

29 210-1 2 -15 16 

210 211-1 3 -31 32 

211 212-1 4 -63 64 

212 213-1 5 -127 128 

213 214-1 6 -255 256 

214 215-1 7 -511 512 

The first applicable approach is to dynamically quantise the incoming data samples when receiving a chunk of 
input samples, e.g., each OFDM symbol or each time slot, based on the provisioned FH link capacity. That is 
to say, we can replace the (de-)compression unit with the FH (de-)quantisation unit for this purpose. This 
approach will further include the quantisation control information to be packed together with the sub-header to 
facilitate the data sample recovery. Nevertheless, the optimal quantisation approach may take too much time 
to find the best solution, and it might take even longer time than the data sample (de-)compression time. To 
this end, we only consider the use of a uniform linear quantizer that can be finished in a much shorter time 
period. 

As the second approach, we can improve the original A-law compression via adding the extra bits for the 
mantissa part, while reducing the number of bits used for the exponent part. The reason behind this is that the 
4-bit mantissa part in Table 2-1 is not enough for the high-amplitude inputs, which will generate significant 
distortion to all sub-tones. Note that reducing the exponent part may also decrease the resolution especially 
when the input signal amplitude is small. Hence, our aim here is to find the trade-off between the signal 
distortion for high- and low-amplitude inputs and we propose two possible candidates as summarised in Table 
2-2 and Table 2-3, respectively. The first candidate directly uses one more bit for the mantissa part from the 
original exponent part in order to decrease the expansion error for a wide range of high-amplitude inputs (i.e., 

from −215 to −212 −1 or from 212 to 215 −1); however, the low-amplitude inputs will suffer significantly. On the 
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other hand, the second candidate strikes a balance in this trade-off via only reducing the expansion error for a 
smaller but critical region (i.e., from −215 to −213−1 or from 213 to 215−1) and giving fewer side-effects to the 
low-amplitude inputs. 

Table 2-2: Scheme of the first candidate to improve original A-law compression. 

Input (16 bits) Output (8 bits) Expansion error 

From To Sign (1bit) Exponent (2bits) Mantissa (5bits) Minimum Maximum 

-215 -214-1 

1 

3 

From 0 to 31 

-255 256 

-214 -213-1 2 -127 128 

-213 -212-1 1 -63 64 

-212 -1 0 -63 64 

0 212-1 

0 

0 -63 64 

212 213-1 1 -63 64 

213 214-1 2 -127 128 

214 215-1 3 -255 256 

Table 2-3: Scheme of the second candidate to improve original A-law compression. 

Input (16 bits) Output (8 bits) Expansion error 

From To Sign (1bit) Exponent (2bits) Mantissa (5bits) Minimum Maximum 

-215 -214-1 

1 

3 From 0 to 31 -255 256 

-214 -213-1 2 From 0 to 31 -127 128 

-213 -212-1 1 From 16 to 31 -127 128 

-212 -211-1 1 From 0 to 15 -63 64 

-211 -210-1 0 From 16 to 31 -63 64 

-210 -1 0 From 0 to 15 -31 32 

0 210-1 

0 

0 From 0 to 15 -31 32 

210 211-1 0 From 16 to 31 -63 64 

211 212-1 1 From 0 to 15 -63 64 

212 213-1 1 From 16 to 31 -127 128 

213 214-1 2 From 0 to 31 -127 128 

214 215-1 3 From 0 to 31 -255 256 

A visual comparison of these two candidates with the original scheme in terms of the output expansion error 
is shown in Figure 2-10. We can observe that both candidates can reduce the largest error as 256/215 = 0.78%, 
while the second candidate exhibits two-times smaller error when the input signal is from −211 to 211−1. Finally, 
one may be curious to know whether we can continually increase the mantissa part by 1 bit to further reduce 
the largest error for the peak input signal. Nevertheless, adding one more bits for the mantissa part will lead 
to a constant expansion level between [−127, 128] for all inputs, and thus it will become a linear uniform 
quantizer, which will be examined in the first approach. 
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Figure 2-10: Output distortion comparisons between original and two modified A-law scheme. 

  

Figure 2-11: Performance comparison of different A-law compression scheme enhancements. 

In the following, we show the performance of these two approaches over two extreme high-order modulation 
cases: (1) the downlink (DL) direction using 3GPP split option 8 with 1024QAM, and (2) the uplink (UL) direction 
using 3GPP split option 7-1 with 256QAM. These high-order modulations make the expansion error become 
a performance dominating factor. In Figure 2-11, we can see that the original 16-bit A-law compression scheme 
has a large gap toward the all floating point receiver, i.e., using 16 bits without any compression. Specifically, 
the gap is approximately 2.9 dB and 1.2 dB when we see the level with 10-4 uncoded bit error rate. If we apply 
the first approach, i.e., using an 8-bit linear uniform quantizer as the replacement, it can reduce the gap by 1.1 
dB and 0.4 dB, respectively for two cases. Further, if we examine the second approach via modifying the 
original A-law compression scheme, both candidates can show significant performance enhancement. 
Specifically, when compared with the original A-law compression scheme, the first candidate can bring 1.7 dB 
and 0.8 dB gain, and the second candidate will generate 2.3 dB and 0.7 dB gain, respectively. Such gains not 
only justify the claim that the performance bottleneck of the original A-law compression scheme is at the high-
amplitude inputs, but also indicate a better performance can be achieved via properly trade-off between high- 
and low-amplitude expansion errors. To conclude, these possible approaches can replace the original A-law 
compression scheme and still maintain the aforementioned the compression benefits. 
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2.2.4 Packaging for the 5G OS 

The functional split can be configured by the RAN-domain controllers according to the optimal functional split 
decided by the technical components of Section 2.1 and the capability of underlying RAN entity. To control the 
functional split, the 5G OS shall configure the necessary configuration for both CU and DU entities. For 
instance, the example configuration files of CU and DU, when applying the F1 interface, are depicted in Figure 
2-12. Note that, in this example, both RU, DU and CU are deployed in the same physical machine and different 
configurations can be applied when deploying them at different machines. 

Active_eNBs = ( "eNB-CU-Eurecom-LTEBox"); 

eNBs = 

( 

 { 

    ////////// Identification parameters: 

    eNB_ID    =  0xe00; 

    cell_type =  "CELL_MACRO_ENB"; 

    eNB_name  =  "eNB-CU-Eurecom-LTEBox"; 

 

    tr_s_preference     = "f1" 

 

    local_s_if_name  = "lo"; 

    remote_s_address = "127.0.0.1"; 

    local_s_address  = "127.0.0.2"; 

    local_s_portc    = 60001; 

    remote_s_portc   = 60000; 

    local_s_portd    = 60011; 

    remote_s_portd   = 60010; 

    

    ////////// MME parameters: 

    mme_ip_address      = ( { ipv4       = 

"192.168.12.170"; 

                              ipv6       = 

"192:168:30::17"; 

                              active     = 

"yes"; 

                              preference = 

"ipv4"; 

                            } 

                          ); 

    NETWORK_INTERFACES : 

    { 

        ENB_INTERFACE_NAME_FOR_S1_MME            

= "eno1"; 

        ENB_IPV4_ADDRESS_FOR_S1_MME              

= "192.168.12.117/24"; 

        ENB_INTERFACE_NAME_FOR_S1U               

= "eno1"; 

        ENB_IPV4_ADDRESS_FOR_S1U                 = 

"192.168.12.117/24"; 

        ENB_PORT_FOR_S1U                         = 

2152; # Spec 2152 

    }; 

  } 

); 

Active_eNBs = ( "eNB-Eurecom-DU"); 

eNBs = 

( 

 { 

    ////////// Identification parameters: 

    eNB_CU_ID    =  0xe00; 

     

eNB_name  =  "eNB-Eurecom-DU"; 

   } 

); 

MACRLCs = ( 

 { 

 num_cc = 1; 

 tr_s_preference = "local_L1"; 

 tr_n_preference = "f1"; 

     local_n_if_name  = "lo"; 

       remote_n_address = "127.0.0.2"; 

     local_n_address  = "127.0.0.1"; 

     local_n_portc    = 60000; 

     remote_n_portc   = 60001; 

     local_n_portd    = 60010; 

     remote_n_portd   = 60011; 

        }   

); 

RUs = ( 

    {     

       local_if_name  = "lo";      

       remote_address = "127.0.0.2"; 

     local_address  = "127.0.0.1";  

     local_portc    = 50000; 

     remote_portc   = 50000; 

     local_portd    = 50001; 

     remote_portd   = 50001; 

 local_rf       = "yes" 

 nb_tx          = 1 

 nb_rx          = 1 

 att_tx         = 0 

 att_rx         = 0; 

 eNB_instances  = [0]; 

    } 

);   

Figure 2-12: Example configuration files for CU (left) and DU (right) when applying F1 interface. 

2.3 Technical Component 3: Flexible Functional Splits 

2.3.1 Summary Description 

As for this technical component, its aim is to flexibly compose the logical BS from different applied RAN 
functional splits between disaggregated RAN entities. This logical BS contains all necessary functionality of a 
BS, e.g., LTE eNB or NR gNB, and it can be further virtualised for multiple tenants in a customised manner for 
each network slice. 

2.3.2 Used programmable platforms and APIs 

To enable such flexible functional split, we exploit the FlexRAN+ platform provided in WP3, as an extension 
from the original FlexRAN platform [23] that only supports monolithic RAN deployment. In this sense, the 
extension considers also support for disaggregated RAN deployment. Moreover, such FlexRAN+ will support 
the changing of functional splits via using the out-band control scheme. Such FlexRAN+ control framework 
includes the FlexRAN+ controller (as the controller) as well as the RAN runtime (as the agent) on top of each 
RAN entitiy. 
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2.3.3 Function Design/Implementation/Evaluation 

Based on the aforementioned FlexRAN+ platform, we show how it can compose the logical BS (lBS) from 
underlying RAN entities and then provide a customised form of the virtualised BS (vBS) in Figure 2-13. Toward 
this two-level abstraction scheme, the different functional splits can be applied by the FlexRAN+ without 
changing the composition of the lBS. For instance, in Figure 2-13, the physical deployments span different 
radio access technologies (Wi-Fi, 4G, 5G) and deployments (monolithic BS, two-and three-tier C-RAN entities) 
and they can be controlled and abstracted as a number of lBSs that comprise the necessary BS protocol and 
baseband processing. Each lBS will be further abstracted into vBSs for each network slice, e.g., 4/3/2 
virtualised BSs are viewed by the slice 1/2/3, for the slice-specific control purposes. These vBSs can possess 
the slice-specific information, such as states, resources and processing capabilities. 

First, the underlying heterogeneous physical RAN entities host a number of RAN PNFs/VNFs for CP/UP 
processing. These PNFs/VNFs can be chained by the split-aware RAN runtime to compose the RAN 
processing, e.g., the DU that comprises both MAC and RLC processing. Moreover, they can be either shared 
by several network slices or customised for slice-specific purposes, e.g., customised PDCP processing for 
low-latency purposes. The RAN runtime provides the underlying CP/UP processing information to the 
FlexRAN+ controller. However, some passive RAN entities do not possess the local RAN runtime due to their 
limited processing capabilities and they therefore rely on the in-band control through the remote RAN runtime 
on top of other entities. For instance, as can be seen in Figure 2-13, RUs and remote radio unit (RRU) rely on 
the in-band control through DU and baseband unit (BBU). To this end, the operating functionalities and the 
relation toward other RAN entities for these RUs/RRUs are maintained explicitly by the connecting DU/BBU. 

Afterwards, each lBS can be formed by the FlexRAN+ controller via (1) chaining the necessary functions of a 
single BS across RAN entities, (2) abstracting the information such as the applied functional split and physical 
deployments, and (3) unifying the status and capability information to be further consumed by vBSs. This 
formation of an lBS is based on the required BS functionality among respective air interfaces and/or RATs. 
Moreover, the FlexRAN+ controller can apply the specific network operator control logic, e.g., the flexible 
change of the functional split between RAN entities, together with the underlying RAN runtime in an out-band 
control approach. Such out-band control approach relies on the control framework comprising FlexRAN+ 
controller and RAN runtime to maintain the service continuity.  

To take one step further, the FlexRAN+ controller can virtualise each lBS into several vBSs based on the 
network slice description to reveal the information (e.g., capability, configuration and state) for each slice 
owner. This vBS is revealed in an as-a-resource manner to each network slice, e.g., virtualised/physical radio 
resources, shared/dedicated RAN processing, and slice-specific users’ information and their associations, to 
apply the slice-specific control logic. Note that these multiple vBSs are isolated from each other. For instance, 
in Figure 2-13, the three vBSs (i.e., vBS1,1, vBS1,2 and vBS1,3) over a single lBS (i.e., lBS1) can apply the slice-
specific radio resource management control logic toward the respective associated users without impacting 
other vBSs. Last but not least, a slice can retain its service requirements via controlling its vBSs and the 
associated users, e.g., slice 1 can balance the load among its 4 vBSs by handing over users to vBS3,1 
according to the vBSs’ load information. 
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Figure 2-13: Two-level abstraction provided via FlexRAN+ architecture framework. 

First of all, the resource manager is responsible to compose the lBS via interacting with the underlying RAN 
runtime instances through the south-bound interface. For instance, it can merge the underlying RAN entities’ 
capabilities to form a logical 4G BS comprising the baseband and protocol processing ranging from physical 
layer, MAC, RLC, PDCP and radio resource control (RRC) for both monolithic and disaggregated deployments. 
Note that the controller will withhold this capability information once a lBS cannot be composed and wait for 
the corresponding RAN runtime to connect. The formed lBSs will then be stored in the LBS information base 
and can be updated on-the-fly according to the dynamics of physical infrastructures and their capabilities. 
Further, it can support the change of functional split of the underlying RAN entities without changing the formed 
lBSs. 

Moreover, these lBSs can be treated as resources to be further abstracted as vBSs based on the needs of the 
slice owner. The second-level abstraction is performed by the virtualisation manager. For example, one slice 
may request RAT and deployment specific vBSs, and thus the particular lBSs with the corresponding 
deployment and RAT information are provided for such slice. In contrast, another slice may only needs vBSs 
of specific RAT and, therefore, the corresponding lBSs with the RAT specific information (e.g., LTE duplex 
mode and transmission mode) are provided. Further, another slice does not request technology specific vBS; 
therefore, the virtualisation manager will provide only performance indicators (e.g., average user-plane latency 
and throughput). These different levels of virtualisation are based on the slice data that contains the slice 
context, such as the slice service level agreement (SLA) and customised level. 

2.3.4 Packaging for the 5G OS 

This technical component aims to bring the vBSs as the customised resources for each network slice based 
on the formed lBS. 
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2.4 Technical Component 4: Disaggregated Heterogeneous Base Station functionality  

2.4.1 Summary Description 

Base station disaggregation will be a ground-breaking feature of the upcoming 5G networks, adding up to the 
network flexibility and manageability. To this aim, in the standardisation efforts of 5G-NR, the integration of 
heterogeneous technologies has been included by means of integrating heterogeneous DUs to a single CU 
[24]. The technical architecture of the standardised interface for the standardised functional split (3GPP option 
2 split) is shown in Figure 2-14. This split is addressing the division of the base station into two elements, the 
CU and DU. A CU includes the processes of the PDCP layer and upwards, able to control multiple DUs 
incorporating the RLC layer and downwards. 

3GPP standardised the interface for the communication between the CU and DUs through the introduction of 
the F1 interface and the F1AP protocol [20]. Different types of DUs shall be supported, including 5G-NR, legacy 
LTE and Wi-Fi. A single CU should be able to serve multiple DUs (1:n relationship), whereas each DU is served 
from a single CU (1:1 relationship). The data plane traffic (payload traffic forwarded to the network UEs) is 
transported over the F1-U interface, encapsulating the traffic with GPRS Tunnelling Protocol (GTP) headers 
over UDP/IP, whereas the control plane (e.g., RRC signalling) is using the F1-C interface, running over 
SCTP/IP. Since this disaggregation of the base station functionality takes place at a higher layer, it allows 
lower layer splits to be incorporated, thus creating a multi-tier disaggregated architecture. 

Based on this functionality, the UTH team has engaged in developing support for heterogeneous DUs in the 
OAI platform [25]. This means that for incorporating new DU functionality to the system (e.g., a Wi-Fi device), 
it should be augmented with the respective functions for handling the communication with the respective CU 
side, for both control and user plane as well as monitoring functions. As not all of the standards are yet finalised, 
regarding the F1 interface setup, we will adopt the following methodology in the developments of the VNFs for 
CU and DU operation: 

 Initially we will provide an IP interface for the communication between the CU/DU interface, for 
both control plane and user plane traffic. This interface is hereby mentioned as F1 over IP (F1oIP). 

 Later in the project, we will develop the 3GPP compatible interface. 

The first solution relies on the creation of an IP interface for the logical connection between the CU and DUs, 
whereas the traffic can be transferred using any of the common transport protocols on top (UDP/TCP/SCTP). 
For successful communication of the components, we have defined a new protocol for addressing the CUs 
and DUs, and to piggyback information that is currently being used by the lower layers of the stack, residing 
at the DU, for controlling the scheduling of the transmissions in the RAN. As the implementation is based on 
the OAI platform, the processes for the CU (RRC, PDCP) and DU (RLC, MAC, PHY) operation already exist. 
We hereafter focus on the new elements of the network, being the F1oIP exchange protocol, and the Wi-Fi 
DUs. The detailed packet format that is employed to carry the data plane traffic between the CU and DUs is 
shown in Figure 2-15. 

 

Figure 2-14: 5G RAN architecture for CU/DU operation. 
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Figure 2-15: F1oIP packet format for sending data to the heterogeneous DUs. 

2.4.2 Used programmable platforms and APIs 

For the development of the aforementioned functionality, the OAI platform has been employed. OAI is able to 
run on any off-the-shelf GPP, with a compatible RF front-end. Although acceleration of the OAI features is 
currently supported in OAI through the Single Instruction, Multiple Data (SIMD) instruction set, no such 
requirements are needed to execute this technical component. Nevertheless, they can be used in order to 
yield performance benefits. Similarly, no formal requirements are needed for running the OAI platform over the 
accelerator solution that the UTH team implements in WP3 (porting OAI over the Zynq platform [4]). This 
porting will allow the OAI instance to reach new levels of channel bandwidth, and can be used complementary 
to the existing solution for providing the RAN as a VNF, to achieve better performance on the DU side.  

2.4.3 Function Design/Implementation/Evaluation 

In this section, we detail the implementation process and the different components that are developed in OAI 
and the respective DU software, and evaluate the solution in terms of performance. For the implementation 
and evaluation of the designed solution, we employ the NITOS testbed [26]. NITOS is used in the context of 
WP6 for the early validation of the project’s solutions. 

 Logical Connection between CU and DUs 

The first solution relies on the creation of an IP-based interface for the logical connection between the CU and 
DUs. For the transferring of traffic between the different components, the common protocols are used 
(UDP/TCP/SCTP).  

 Communication Setup and Message Exchange 

The CU and DU units are able to discover each other upon the system start, using predefined capabilities and 
a configuration file with the locations of the different modules. In the configuration file, information about the 
address and port of the DU side is provided. The communication is based on the client-server paradigm, with 
the DU running the server side and the CU the clients. Upon system startup, the PDCP layer spawns new 
thread processes running the clients that are associated with each DU. It is worth to mention that this capability 
allows us to further tailor the transport protocol based on how each DU better performs; for example, a single 
CU may maintain concurrent connections to an LTE and a WiFi DU, with the transport being carried over TCP 
for the former and over SCTP for the latter.  

Upon this initial configuration phase, and through the exchange of “Hello” messages, capabilities exchange 
messages follow. Each DU send to the CU a message indicating the type of DU that is being handled, along 
with its current configuration. From this point, the exchange of the user-destined data taking place either on 
the DL or the UL channels, is being carried out through the F1oIP functions. Since both ends need to be 
informed of all the values needed for carrying out any computations at each receiving end (e.g., hash tables 
with the network users), extra fields shall be allocated at each packet piggy-backing all the needed information. 

Each packet should include fields for packet type, DU type, and addresses each side through the DU ID and 
the CU ID. Different types may be supported for the same DU, as a single unit may incorporate functionality 
for both technologies, whereas the selection of the interface is made by the CU. This relies on a small module 
implemented on the OAI platform, which selects the DU that the traffic shall be forwarded to. Preliminary results 
show only three indicative policies for benchmarking purposes (DU aggregation, Round Robin, single 
technology) but can be further tailored by defining percentages between the different DUs, even during the 
base station execution through the utilisation of the FlexRAN implementation. The overall overhead posed by 
this header, along with the current status in the size of the respective variables that shall be used and 
exchanged for OAI is measured to be 80 bytes long. 
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 Wi-Fi DUs 

As the Wi-Fi stack significantly differs from the mobile networking stack in terms of the supported procedures, 
different processes need to take place upon the reception of the F1oIP packets for transmitting the payload to 
the network UE, or sending the data back to the CU. These processes include the reception of the F1oIP 
packets transmitted from the CU, unpacking and stripping off the respective headers, and subsequently 
delivering the payload to the wireless driver running on the DU device. For the UL data flow, payload traffic 
shall be encapsulated in the respective headers for the PDCP instance running on the CU. This includes 
dedicated processes for assigning new sequence numbers for the packets sent to the CU, as well as packet 
compression. Information that does not exist in the Wi-Fi operation (e.g., protocol context, data bearer ID) 
needs to be integrated on the F1oIP messages to allow the transparent handling of the packet reception at the 
CU side. Thus, a mapping between the Wi-Fi end-points with the related protocol context takes place in the 
DU. This process requires that the initial packet transmission (HELLO) happens from the CU to the DU, in 
order to keep this information, and updates are sent from the CU side in the case of a new UE. Through this 
process, all the heterogeneous DUs maintain a mapping between actual IP addresses used to reach each 
client of the network and the RNTIs that are used by the CU side to distinguish traffic between each different 
UE. In the case where the end-client side uses a similar joint PDCP procedure, such as a 5G-NR/LTE instance, 
this process can be omitted. 

2.4.4 Evaluation Methodology and experiment setup 

The described functionality has been executed over the NITOS testbed. NITOS is a heterogeneous testbed 
located in the premises of the University of Thessaly, in Greece. It offers a very rich experimentation 
environment with resources spanning from commercial LTE, to WiFi and Software Defined Radio (SDR) 
platforms that suits our experimentation needs. 

For the development of the messaging exchange scheme, we employed Google's Protocol Buffers Library and 
the C language binding [27]. By formatting the message header through the protobuf library, the overall header 
size of our communication solution, along with the piggybacked information, is 80 bytes, which is exchanged 
between the CU and DUs or vice-versa whenever a packet is transmitted over the network.  

The development of the CU/DU functionality has been written as a separate module inside the Layer 2 
functionality of the OAI code. As the transport protocol between the CU and DUs, we use an asynchronous 
TCP or UDP interface. The current configuration of the CU enables the utilisation of different transport channels 
per each DU, thus allowing them to run with different settings (e.g. TCP for the LTE-DU and UDP for WiFi-
DU). 

The utilisation of the protobuf library provides the opportunity for applications of different languages to use the 
same message definitions. Therefore, for the development of the WiFi DU we used a Python based agent. 
This agent is capable of receiving the CU messages, retrieving the payload and injecting it to the WiFi device 
that is configured as an Access Point. The injection is being handled by the Scapy Python module [28], which 
provides bindings for creating packets and injecting them to a network interface. The topology used for our 
experimentation process is given in Figure 2-16. Since the current version of F1oIP is only overriding the data 
plane communication between the CU and the LTE DU, the production of two different binary files is not 
possible. However, we emulate this type of behaviour by injecting delay between the network interfaces that 
are used for this communication between the CU and DU, equal to 0,250 ms. The delay that we inject is 
performed using the netem application and is equal to the mean delay that we measure over the FH between 
the CU and the WiFi DU. 
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Figure 2-16: Experiment setup for heterogeneous DUs in NITOS. 

Figure 2-16 provides our experimental setup for the NITOS case, considering a multi-homed UE with two 
wireless interfaces, a COTS LTE and a WiFi device. The experimental evaluation of our scheme is organised 
in two subsections: 1) Initial benchmarking of the platform for the different policies for network selection, and 
in terms of Cloud resource consumption as the number of DUs increases, and 2) evaluation based on the 
delay over the FH interface. 

We measure the single-unit vanilla OAI eNB to achieve 34.4 Mb/s goodput for the DL channel for the under-
test configuration. The measurements are carried out at the UE, by injecting traffic from the Core Network. 
Subsequently we measure the performance of OAI including our additions, for either UDP or TCP based FH 
(see Figure 2-17). We evaluate the process for three different policies of forwarding traffic from the CU side to 
the DUs, as follows: 

 Aggregation Mode, where the traffic is sent to all the available DUs. 

 Round Robin, where each DU is selected with a Round Robin manner. For the cases of two DUs, 

the total injected traffic is split to 50% per each DU. 

 Single DU, where only one of the DUs is selected for transmitting the data traffic. 

We see that for the Aggregation mode, in which the CU is forwarding traffic to all available DUs, the achieved 
performance for the LTE network is close to the vanilla setup. Likewise, the single network selection policy 
produces similar results. This is due to the configuration of F1oIP that exchanges signalling messages between 
the CU and the DU only during the initial setup phase. For the Round-Robin configuration we observed slightly 
lower performance for both DUs, caused by the extra delay induced in the system by the respective processes 
that determine the DU selection. 

  

Figure 2-17: Policies Evaluation for different FH transport. 
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Figure 2-18: CPU and MEM utilisation on the CU side for varying number of managed DUs. 

  

Figure 2-19: Policies Evaluation for varying delay on the FH. 

As a second benchmarking evaluation we measure the requirements for the CU in processing power and 
memory, when varying in the number of DUs deployed. Figure 2-18 depicts our experimental findings in terms 
of measured overhead for each new DU introduced to the system, compared to an initial setup with 2 DUs. 
We use only WiFi DUs for this type of experiment. We measure the resource requirements for up to 16 DUs 
in the system, as at that point we determine that the CPU of the machine running the CU software is exhausted. 
As illustrated, the processing resources needed to run the CU for up to 8 DUs requires approximately 25% 
more processing power compared to the 2 DUs scenario. For supporting the remaining set of the DUs (up to 
16 DUs) we require about 34% more processing power. For the memory usage we observe a near linear 
increase as new DUs are added to the system. Approximately, from the CU side, each new DU consumes 
additionally about 30MB of memory for its efficient operation. This performance metric needs to be taken into 
consideration when selecting to deploy the function as a VNF, as the respective processing and memory 
resources shall be allocated to the host machine. 

As a second set of experiments, we measure the delivered goodput and Round Trip Time (RTT) for varying 
delay on the FH link. The latency on both the LTE and WiFi links is measured to be the same. We use the 
netem application to set delay on the FH link. We use the aggregation policy for these experiments, as this is 
the policy that produced higher results in the initial benchmarking experiments in the previous section. Figure 
2-19 illustrates the results for either UDP or TCP F1oIP protocol configuration. 

For both cases, we see that the performance starts to drop at around 70 ms of MH latency. Nevertheless, the 
respective RTT (see Figure 2-20) for the same interfaces seems to be growing by the double delay and a fixed 
amount added by the wireless access. Based on our results, we can incur that if the FH interface is realised 
over a fibre-based Ethernet link, the CU will be able to serve distributed DUs located at 200 km away without 
any decrease in the provisioned service at the end-client in terms of throughput performance. Of course, in 
such environments, we need to investigate further on how to differentiate the paths that low latency 
applications take in order to minimise the impact on the user's QoE. 
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Figure 2-20: UE RTT times for different technologies for varying delay on the FH. 

2.4.5 Packaging for the 5G-OS 

The provided functionality is currently being wrapped to be provided as a set of VNFs that will be deployed 
through the 5G OS being developed in WP5. Four different VNFs will be developed for deploying the solution: 

 A cellular DU (LTE or 5G-NR) VNF. 
 A WiFi DU VNF. 
 A CU VNF. 
 Core Network VNF(s). 

As the core network may be broken up to three different VNFs, further disaggregation of the core network VNF 
to three more is possible. For the initial bootstrap of the VNFs, the APIs developed in WP3 [4] will be used in 
order to allow the transparent configuration of the VNFs. The APIs setup a REST-based agent software, 
provisioned through Cloud-Init [29] along with the actual VNF, in charge of discovering the interconnected 
VNFs (e.g. DU with CU) and setting up the initial configuration files.  

As the environment for deploying and instantiating the VNFs, we are using the OpenSourceMANO (OSM) 
orchestrator, which is compliant with the NFV-MANO architecture, managing the NITOS testbed as the NFVI. 
In order to accommodate functionality for deploying VNFs over heterogeneous networks, the VIMs is a slightly 
altered version of OpenVIM and OpenStack. Through these developments, we can stitch the VNFs to wireless 
interfaces instead of the traditional Ethernet interfaces that these VIMs support. 

Below is a Network Service Description (NSD) of instantiating the Core Network, CU, LTE and WiFi DUs over 
the NITOS testbed. The NSD will be made available to the 5G OS repository of services. 
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Figure 2-21: NSD description for supporting disaggregated heterogeneous RAN VNFs in OSM. 

2.5 Technical Component 5: Wireless Transport Technologies with Functional Split Support 

2.5.1 Summary Description 

The goal of this technical component is to study under what conditions Sub-6 wireless backhaul technologies 
could be used to transport some of the functional splits defined by the eCPRI standard. Figure 6 included in 
deliverable D4.1 [3] depicts the functional splits defined by 3GPP and eCPRI, where the lower the functional 
split (i.e. closer to the RF front-end), the higher the potential centralisation gains. 

For our study, we discard functional splits that require the transport of digitised radio samples, and instead 
focus our attention to eCPRI split [9] that is based on the transport of frequency domain samples between the 
Distributed Unit (CU) and the Remote Unit (RU). 

The eCPRI functional split is supported by the OAI format, where is referred to as the IF4p5 split [30], with an 
architecture illustrated in Figure 2-22. 
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Figure 2-22: OAI IF4p5 functional split over Sub-6 wireless transport. 

Table 2-4: OAI IF4p5 required transport capacity. 

Carrier bandwidth OAI IF4p5 capacity 

5 MHz 138 Mb/s 

10 MHz 276 Mb/s  

20 MHz 553 Mb/s 

The bandwidth required to transport the OAI IF4p5 interface depends on the number of antennas, and the 
bandwidth of the LTE wireless carrier. Our interest in this study is on low data rate Radio Access Networks 
(RANs), hence we focus on SISO systems with 5, 10 and 20 MHz of wireless carrier bandwidth. In this settings 
we experimentally measure the following required capacities in the OAI IF4p5 interface: 

As a reference Sub-6 wireless transport we use the wireless BH technology being developed by I2CAT in 
WP3. These BH nodes are based on a Single Board Computer (SBC) manufactured by Gateworks running 
Ubuntu Linux as OS (kernel version 4.9.65), which may connect multiple wireless modems through a mini-
PCIe interface. The selected board features QCA9888 modems from Qualcomm Atheros implementing the 
wave 1 of the IEEE 802.11ac standard. This radio technology is capable of operating with an 80 MHz carrier 
bandwidth, and delivers application layer data rates between 200 Mb/s and 300 Mb/s in practical deployments 
[31]. 

2.5.2 Used programmable platforms and APIs 

This technical component is based on the joint access-backhaul SBC developed as part of WP3, and reported 
in deliverable D3.2 section 3.2 [5]. 

2.5.3 Function Design/Implementation/Evaluation 

Looking at the OAI IF4p5 data rates included inTable 2-4, we can see that: i) a 5 MHz carrier should be readily 
supported by the considered Sub-6 wireless transport, ii) a 10 MHz carrier bandwidth is pushing the current 
limits of a single wave 1 IEEE 802.11ac modem, and iii) a 20 MHz is not supported by one modem. 

With this a-priori knowledge we as ourselves: 

- Q1. What is the maximum number of hops that we can use to BH a 5 MHz carrier using a IF4p5 
interface? 

- Q2. Can we bond, using SW, multiple wave 1 IEEE 802.11ac modems in order to aggregate capacities 
and serve the 10 MHz and 20 MHz carriers? 
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In order to bond multiple IEEE 802.11ac wireless modems using software we propose the architecture depicted 
in Figure 2-23. 

 

Figure 2-23: Software based NIC bonding architecture. 

The challenge in SW-based bonding is to deliver the packets in order at the other side of the bond. Hence, we 
adopt the following design: 

1. Individual mac80211 based wireless NICs are pairwise connected between a pair of nodes, forming 
separate wireless networks operating at different channels to minimize interference. See in the figure 
the potential IEEE 802.11 channels that could be considered for operation at 80 MHz mode. 

2. At each node the various wireless interfaces (wlanX) facing a given neighbor, are bonded together 
using an existing Linux tool known as a bond interface (e.g. bond0)1. A bond interface aggregates 
multiple network interfaces into a single abstracted software interface presented to the OS, which 
supports various schedulers to distribute incoming traffic between the various wireless interfaces. In 
our case, since we want to increase capacity, we use a Round Robin (RR) scheduler. 

3. Finally, noticing that the RR scheduler at the bonding interfaces could introduce packet reordering, we 
need to introduce buffers that allow the reordering of packets if they are delivered out of order. For this 
purpose we need a tunneling technology that offers a layer two abstraction to the OS, while using TCP 
as underlying technology. We use openvpn2 disabling encryption to avoid increased latencies. 

2.5.4 Evaluation Methodology and experiment setup 

To evaluate the throughput achievable by aggregating multiple wireless links, we set-up a 1-hop double link 
connection between 2 SBCs as shown in Figure 2-24. 

 

Figure 2-24: Single-hop set-up used to perform the bonding tests. Each IEEE 802.11ac WiFi card is 
MIMO 2x2. 

                                                      
1 https://wiki.linuxfoundation.org/networking/bonding  

2 https://openvpn.net/  

https://wiki.linuxfoundation.org/networking/bonding
https://openvpn.net/
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The premises where the tests took place are overfull of active WiFi networks sharing the same spectrum that 
can considerably compromise the accuracy of the results. For such a reason we decided to connect the WiFi 
NICs forming a single wireless network via a cable. To simulate the channel attenuation, RF attenuators have 
been used. Even under this condition we measured a certain degree of interference from the active WiFi 
networks whose RSSI has been measured between -70 and -85 dBm. Since the channel attenuation has been 
calculated to provide an average RSSI at the receiving interface of -45 dBm, the interference from external 
WiFi sources can be considered not relevant enough to cause an appreciable performance degradation. 

As showed in Figure 2-24, each SBC is equipped with 2 IEEE 802.11ac WiFi card each of them 2x2 MIMO 
capable. The SBC is ARMv7 based running a custom Linux Kernel version 4.9.65. The tests have been 
performed using the iperf and iperf33 tools to evaluate the end-to-end throughput using UDP and TCP as 
transport protocol. 

The bonding functionality has been added to the Linux kernel compiling the bonding.ko module. Other than 
the bonding module, it was required to add the teaming module necessary to combine the interface together 
and the specific team_mode module to be used. For these experiments the team_mode_roundrobin.ko has 
been compiled. The round-robin mode transmits packets in a sequential order from the first available slave 
interface (the WiFi interface) through the last. If two interfaces are slaves in the bond and two packets arrive 
to the bond interface, the first packet will be transmitted on the first slave and the second one will be transmitted 
on the second slave. A third packet will be sent on the first slave and so on. 

Parameters of the bonding configuration have been adjusted in the attempt of maximising the throughput, 
however evaluations and tests are still in progress, and additional progress will be reported as part of 
deliverable D4.3. 

We measured end-to-end throughput in two different configurations: i) sending one packet per WiFi slave 
interface, and ii) sending 32 packets per WiFi slave interface. The choice of how many packets to send over a 
WiFi interface affects (at least in theory) the aggregation and the system queueing process, hence the overall 
performance. The results in Figure 2-25 depict that the WiFi interfaces transmitting alone (not bonded together) 
are able to provide a UDP throughput around 270 Mb/s in average and a TCP throughput around 360 Mb/s in 
average.  

 

Figure 2-25: Throughput of each WiFi interface transmitting alone. 

Bonding 2 WiFi interfaces together performing a simple round-robin scheduling between them brought to an 
achieved throughput that has been measured around 470 Mb/s in average for UDP traffic, but of only 250 Mb/s 
in average for TCP, as depicted in Figure 2-26 . 

                                                      
3 https://iperf.fr/ 
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Figure 2-26: UDP and TCP throughput achieved by bonding two interface together. 

While a performance close to 500 Mb/s is achieved when bonding two wireless interfaces together, and 
transmitting UDP traffic, surprisingly the bonding performance decreases in the case of TCP. The reason why 
a TCP performance is severely affected is due to an interaction between the round-robin mechanism, the 
AMPDU aggregation used by the IEEE 802.11ac NICs, and the decrease in congestion window triggered by 
TCP when receiving three consecutive duplicate ACKs. To understand this effect, consider the following 
situation: 

1. TCP packets are delivered to the two wireless NICs in a round robin fashion, hence the wlan0 interface 
receives packets #1, #3, #5, …, and the wlan0 interface receives packets #2, #4, #6, … 

2. wlan0 is the first interface to transmit over the air and when doing so creates an AMPDU aggregate 
with packets #1, #3, #5, …, 

3. Immediately upon receiving these packets the TCP sink generates three ACKs all requesting the 
packet with sequence number #2, which is sitting in the queues of wlan1 interface in the transmitter. 

4. Upon receiving the three duplicate ACKs the TCP source decreases the congestion window, hence 
the throughput is impacted. 

This is a problem in our attempt to transmit a FH interface over the wireless link, because the FH interface 
cannot tolerate reordered packets. Hence additional research is required, for which we consider the following 
potential paths that will be studied in deliverable D4.3: 

- Introducing an additional virtual interface between the bonded interface and the TCP streams that 
reorders incoming packets. Such interface could be developed using Click-router modules. 

- Using MP-TCP as a mechanism to aggregate capacity at the higher layer. The advantage of MP-TCP 
is that a separate congestion is kept for each path, and hence uneven path capacities could be 
efficiently aggregated. 

In addition, we observed a CPU performance issue while running UDP throughput tests in the proposed 
architecture. The high queueing activity at the bonding interface receiving end continuously generates software 
interrupts overloading the CPU capacity. Such issue brought to instability of the receiving system as observed 
during an intensive test reported in Figure 2-27. 
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Figure 2-27: UDP throughput degradation due to high queueing interrupt activity that overload the 
CPU capacity. 

 

Figure 2-28: Bonding architecture based on MP-TCP. 

Based on the problems we discovered in our original architecture based on the kernel bonding module, we 
turn our attention to an alternative architecture based on Multipath TCP (MP-TCP), which is depicted in Figure 
2-28. 

MP-TCP is a transport protocol that replaces TCP and allows the aggregation multiple IP interfaces, 
representing different paths within a single transport session. MP-TCP automatically balances the data to be 
transmitted among the available paths (IP addresses), according to its built-in scheduling and congestion 
control mechanisms. Thus, we propose an architecture where the edge transport devices encapsulate 
incoming packets into an MP-TCP session that can aggregate capacity among transport paths (c.f. purple and 
green paths in Figure 2-28). In our architecture the end-to-end transport paths across the wireless transport 
should have been pre-provisioned before the actual traffic flow begins. The advantage of our architecture is 
that the transport paths can be dynamically updated in a manner that is transparent to MP-TCP. 

Taking into account these considerations, we tested the Linux Kernel implementation of Multipath TCP (MP-
TCP)4. MP-TCP needs a modified Linux Kernel to be implemented. For this reason, a custom kernel version 
4.14.79+ has been compiled. The MP-TCP implementation in Linux is modular and is able to incorporate 

                                                      
4 https://multipath-tcp.org/  

https://multipath-tcp.org/
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different congestion control mechanisms. For our evaluation we study the following congestion control 
modules: 

- Linked Increase Algorithm (LIA) [32]. 

- Opportunistic Linked Increase Algorithm (OLIA) [32]. 

- The Balanced Linked Adaptation Congestion Control Algorithm (BALIA) [33]. 

The results obtained are shown in Figure 2-29. Under the same conditions described in the beginning of section 
2.5.4, MP-TCP proved to be able to aggregate the throughput of the two IEEE 802.11ac interfaces providing 
a stable TCP throughput around 500 Mb/s in average. The choice of the TCP congestion control algorithm 
does not make a substantial difference as depicted in the lower part of Figure 2-29, as long as it is one of the 
recommended algorithms. However, we measured a performance decrease using Cubic (the default Linux 
Congestion Control algorithm). A slight throughput improvement, with respect to the provided results, has been 
measured classifying transport traffic as AC_VO in IEEE 802.11ac, which uses the smallest contention 
window.  

From the CPU usage point of view, MP-TCP is less demanding than bonding. The CPU usage never overcame 
40% overall, and the queueing interrupt process contribute for at most 24% of the total CPU capacity. 

After this evaluation we have not been able to reach the 553 Mb/s required to transport OAI IF4p5 traffic for a 
20 MHz cell, but we can easily FH 5 MHz and 10 MHz cells. However, the performance delivered by MP-TCP 
is very close (approximately 500 Mb/s) to the level required to FH 20 MHz cells. Hence, we believe that with 
additional research on FH compression and the use of one 160 MHz channel in one of the IEEE 802.11ac 
NICs the 20 MHz target is on sight. 

 

Figure 2-29: MPTCP throughput measured using different congestion control algorithms and ToS. 

2.5.5 Packaging for the 5G OS 

Does not apply. 
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3  Transport Slicing for converged wired-wireless FH/BH 

networks and integration with 5G-PICTURE orchestrator 

3.1 Introduction 

Under the umbrella of transport networking, BH and FH networks offer the underpinning for connectivity 
services for the case of disaggregated RAN with multiple functional splits. In order to couple with the strain 
raised and satisfy the strict requirements of 5G systems, significant changes have been undergoing in transport 
networking. In this section we analyse the technical components for the following three categories of transport 
networks: optical, Ethernet/IP and wireless networks. As described also in deliverable D4.1 [3] the reason for 
selecting this classification is that unlike layer 2 and layer 3 networks, optical network resources and transport 
format are different due to their analogue nature. Similarly, when using wireless technologies these are subject 
to issues like interference or channel variations that we do not meet in optical networks. 

3.2 Technical Component 1: Time Shared Optical Network (TSON) 

3.2.1 Summary Description 

The TSON network brings flexibility and scalability in the optical transport networks. The TSON node using 
flexible TDM, allows allocation of time slots. It also permits to configure the size of a time slot. The TSON edge 
node is able to classify the ingress traffic according to the VLAN tag where each network slice is identified by 
a VLAN ID. 

To benefit the advantages of TSON, an SDN controller is used to configure the TSON nodes. In this section, 
we focus on the description of the SDN controller used to configure the TSON nodes in order to provide end-
to-end connectivity through the TSON optical transport network. 

The TSON SDN controller is based on the open source OpenDayLight (ODL) platform. It is composed 
essentially of three important modules which are: 

 Topology Manager. 

 Open Source Mano (OSM) Northbound module. 

 Extended OpenFlow  modules. 

 

Figure 3-1. TSON ODL SDN controller. 
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Figure 3-2 Restconf request getting by the OSM module. 

The Topology Manager (TM) is the module which exposes an abstraction of the TSON network topology. It 
provides the inputs to the other modules. For example, it provides the information about the different nodes to 
the OSM module. The OSM northbound module permits to get the request from the northbound interface and 
initiate the process to configure the TSON node according to the received request. 

The OSM module RESTCONF API is able to receive the request to establish the end-to-end connectivity and 
expose the TSON edge node topology to the northbound. Figure 3-2 shows the json frame representing the 
end-to-end request through the TSON network received by the OSM module. This request defines the end 
points and the port toward the client entity. It also defines the VAN tag to separate the network slices and the 
required SLA of the transmission.  

The extended OpenFlow is designed and implemented within ODL to configure the TSON optical network. The 
extended OpenFlow modules are OpenFlowJava module and OpenFlowPlugin. They handle the OpenFlow 
messages to configure the TSON nodes and the optical elements (optical cross connection switch, Wavelength 
Selective Switch). The current extension permits to set the number of the time slices in the TSON frame. These 
modules are going to be extended to allow setting up the size of the frame, the size of the time slice and the 
size of the overhead. Also, since the OpenFlow protocol has relatively poor flexibility in terms of extension and 
implementation in ODL, studies are going on to evaluate the use of the NETCONF protocol to configure the 
TSON nodes. 

In addition, an external module to ODL, written in python, is developed to compute the path in the TSON 
network. This module is called TSON Path Computation (TPC). The calculation of the path is based on 
bandwidth and latency. 

When the OSM module receives the request to establish the end-to-end connectivity through the TSON 
network. The request contains the TSON endpoints, the ingress port, the bandwidth, the latency and the VLAN 
tag which permits to identify the network slice. The request is forwarded to the TPC. The TPC based on the 
acquired abstraction of the topology and empirical model, determines the path through the TSON network by 
using shortest path algorithm. The TPC module contains a list where the status of the TSON nodes and the 
different elements in the TSON network such as the optical cross connection switch are stored. The result of 
the calculation path is sent to the OSM module, containing the different nodes and the ports involved in the 
transmission, the bandwidth and latency. The OSM module, according to the received result, uses the 
extended OpenFlowJava and plugin APIs to configure the appropriate nodes. 
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3.2.2 Used programmable platforms and APIs  

Section 2 of deliverable D3.1 [4] describes the different programmable platform designed and developed to 
transport and handle the heterogeneous traffic. The first used platform implements the TSON developed 
program in the Xilinx VC709 platform. This FPGA can be implemented as a standalone or in the test server 
machine to run as a TSON node [4]. Figure 3-4 shows the standalone TSON node. The current implementation 
provides 2 inputs as clients and 2 outputs towards the TSON network providing the TSON frames. It also 
contains the Look Up Table (LUT) port supported by the FMC card plugged in the Xilinx VC709, to allow 
reprogramming the parameters of the TSON node. 

 

Figure 3-3 TSON node implemented in Xilinx VC709 FPGA platform. 

 

Figure 3-4 TSON implementation in FPGA embedded in the server. 

The current implementation is able to classify 2 VLANs tags. Moreover, it is possible to extend the number of 
VLAN tags up to 4 by using the other ports of the FMC card. An OpenFlow SDN agent is designed and 
developed to allows the FPGA to receive the instruction from the SDN controller. This OpenFlow SDN agent 
is implemented in the server and communicates with the FPGA using the LUT port. 

Figure 3-5 illustrates the first results regarding the implementation of the TSON node in the test server 
machine. The NIC Card is used to communicate with the SDN controller. The developed OpenFlow API agent 
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is implemented in the server containing the FPGA. The LUT configuration of the Implemented TSON is 
performed via the PCIe interface instead of to use SFP LUT port in the standalone implementation case.  

 OpenFlow protocol Agent 

The programmable platform within TSON FPGA is described in deliverable D3.1. This platform contains the 
API called SDN agent, which is the interface between TSON node platform and the SDN controller. The API 
contains the extended library of OpenFlow to handle the configuration of TSON node. It contains 2 interfaces, 
one of them is connected to the SDN controller using a TCP/IP connection and the other one is connected to 
the TSON node via the PCIe or the raw socket to communicate via the SFP port. 

Figure 3-6 shows the supported action messages by the SDN agent. These action messages are extended to 
support TSON parameters. This API receives the request from the SDN controller to configure the TSON node. 
It gets the parameters from the OpenFlow messages in order to build the Ethernet Frame to set the Look Up 
Table (LUT) of the FPGA to set up the TSON node. The SDN controller is able to get the status of the current 
configuration of the TSON node. 

 

Figure 3-5 Extended OpenFlow message for TSON. 

 

Figure 3-6: General SDN agent design to control a standalone TSON implementation. 
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The SDN agent is divided into 2 main parts. The entry point is the main agent, which calls the second important 
component: the core agent (Figure 3-7). The core agent runs two threads: 

 OpenFlow Transceiver. 

 Southband Thread. 

The OpenFlow Transceiver permits to the agent to communicate with the ODL controller. It is composed of 
two methods within OfTransceiver Class. It creates a TCP/IP socket with the IP address and the port of the 
controller. In addition, it selects the right version of the OpenFlow requested by the user. 

The Southbound  communication is ensured by two classes, which are the NetworkDevice and the 
NetworkDeviceTransceiver. The NetworkDeviceTransceiver class is the most important class to communicate 
with the FPGA. It contains the method to initiate the connection between the python openflow agent and the 
FPGA and the methods to build the read the Ethernet LUT frames to configure the TSON parameters. It 
contains the methods required to send the built Ethernet LUT Frame to configure the FPGA, and the methods 
that read the messages from the TSON Node. 

In the case of the implementation in the test server machine the southbound is designed to communicate with 
the FPGA via the PCIe. 

 TSON Path Computation (TPC) API 

The TPC API is a python API developed to calculate the path in the TSON network. Two parameters are 
considered. These are bandwidth and latency. The shortest path algorithm is used to determine the suitable 
paths according to the received request. The latency on the TSON network depends on the bandwidth and the 
distribution of the active time slices and the size of the packet. The lowest latency, according to the bandwidth, 
is achieved when all the available time slots are allocated. The estimation of the latency used by the TPC 
module is based on an empirical model. The latter is obtained by measuring the latency according to 
bandwidth. The size of the generated packets to measure the latency is random in order to emulate the reel 
data traffic. The range of the random size is from 64 bytes to the 1500 bytes. The minimum, the maximum and 
the mean latency values are measured but for the estimation we consider only the mean value. Figure 3-7 
summarises the results of the empirical experience and depicts the mean values of the latency. 

The figure above shows that the latency decreases in function of the data rate. The high latencies for the low 
data rates are less than 1 ms. The different weights of each node are obtained based on Figure 3-7, where 
each latency value corresponds to a specific weight. In addition, the different paths of the different connection 
points have a specific fixed weight in function of the delay introduced by the link. According to data rate, the 
current topology and the available resources, a weight is attributed to the TSON node if it exists one or several 
paths provided by the shortest path algorithm satisfying the requested latency. The path corresponding to the 
lowest weight is transmitted to the OSM module. If the requested latency is not achieved the bandwidth is 
increased gradually to reduce the latency of the TSON node. For each step, the shortest path algorithm is 
applied until an available path is found.  

 

Figure 3-7 Estimation of the latency in the TSON network. 
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3.2.3 Function Design/Implementation/Evaluation 

To evaluate the integration of the control plane and the influence of the TSON network on the data plane, we 
present the implemented testbed for the integration of MANO with TSON as shown in Figure 3-8. Indeed, two 
VNFs of the same Virtual Network Service (VNS) located in two different datacentres (DCs) can communicate 
via TSON network where the standalone TSON node are implemented and where each VNS uses one slice 
in the optical transport network identified by the VLAN tag. 

OSM is used for orchestration and an ODL SDN controller is used to manage the TSON network. OSM 
manages the deployment of different VNSs where the VNFs are hosted in DC managed by OpenStack. In this 
test two VNSs are deployed. 

 

Figure 3-8. Evaluation of the DO DC and data plane in TSON network. 

The first VNS is composed of 2 VNFs, where each VNF has the “Iperf” tool installed (to measure the 
performance of the transmission between two VMs over TSON); and both VNFs are in two different DCs. Also, 
an LTE network, as the second VNS, is implemented in parallel to emulate the BH traffic. The different 
components of EPC for LTE are virtualised using OAI, which is an open source LTE emulator. OAI combined 
with a Universal Software Radio Peripheral (USRP) is used here to emulate a RAN. An LTE dongle is 
connected to a computer to emulate the User Equipment (UE). The interface between the orchestrator and the 
ODL controller is a RESTCONF interface, where OSM sends a request to configure the end-to-end connectivity 
in the TSON network to the ODL controller. This request specifies the information about the TSON edge node, 
the entry points of the TSON node (input ports), the VLAN tag, the bandwidth, and the latency. The deployment 
of a VNS is carried out by OSM; this involves OSM first deploying the VNFs in the DCs. Once the VNFs are 
deployed in the DCs, they send the VLAN information about the network connected to the VNFs to OSM. OSM 
forwards the TSON relevant information along with the received VLAN IDs to the ODL SDN controller as shown 
in the Wireshark capture in Figure 3-2. 

In ODL, an API called OSM Module, which receives the request to configure the optical transport nodes, has 
been developed. This module gets the TSON network topology from the Topology Manager (TM) to configure 
them. The TPC calculates the path in the TSON using the shortest path algorithm, utilizing the optical transport 
topology obtained from TM. The result of the path computation provides the outputs of the TSON nodes and 
the ports of the optical cross connection (OXC) switch to configure. The TPC sends the results to the OSM 
module that configures the different nodes by using an extended OpenFlow protocol developed to set the 
parameters of TSON node and the OXC switch. Concerning the southbound interface in Figure 3-8, the TSON 
agent and the OXC agent have been developed to receive the OpenFlow messages from ODL to translate 
them for configuring the TSON node and the OXC. 

To evaluate the performance of data plane, the LTE VNS is deployed from OSM which has a 1 Gb/s bandwidth, 
360 µs latency and VLAN ID 100 where the input TSON port is 1. The second VNS for “iperf” has 1 Gb/s 
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bandwidth, 500 µs latency and VLAN ID 101 where the input TSON port is 2. 2 km of optical fibre is allocated 
to the LTE VNS and 8 km of optical fibre is allocated to iperf VNS. Also, the UE in the LTE network service 
uses iperf tool to measure the performance of the mobile BH network based on TSON. 

To show the impact of TSON, the result for the case without TSON where the two ends of the DCs are 
connected only via OXC are also computed and compared with the case where TSON is used. Figure 3-9 and 
Figure 3-10 show the performance of the data plane vs. the optical budget of the lost packets and jitter 
respectively. The average of the difference between the result with and without using TSON is about 2% for 
the “iperf” VNS and about 1.1% for the LTE VNS for the lost packets. The average difference in case of jitter 
is about 0.1 ms for the “iperf” VNS and about 0.9 ms for the LTE VNS. This slight increment of the lost packet 
and jitter is due to the data processing performed by the FPGA.  

The radio performance is measured by connecting the Radio Frequency (RF) output port of the USRP to an 
LTE spectrum analyzer. The TSON network does not have any influence on the quality of the radio signal. 
Indeed, for an LTE Bandwidth of 10 MHz the data transmission rate is constant and equal to 12 Mb/s for the 
UE. In addition, the Error Vector magnitude (EVM) is 1.2 % on the RF downlink and 1.8 % on the RF uplink. 

 
Figure 3-9: End-to-end packets lost. 

 

Figure 3-10: End-to-end measured Jitter. 

3.2.4 Packaging for the 5G-OS 

The Integration of the TSON control plane in the 5G OS is performed by the definition of the TSON Domain 
Orchestrator (DO) (Figure 3-11). Indeed, the TSON DO is composed by the OSM. The OSM has been chosen 
since it is able to manage the TSON connectivity and the Network Function Virtualised. The OSM uses the 
RESTCONF API to expose the TSON edge node topology to the Multi Domain Orchestrator (MDO). It also 
gets the request from the MDO indicating the endpoints, the VLAN tags, and the QoS corresponding to the 
bandwidth and the latency. The WAN infrastructure Manager (WIM) connector in the Resource Orchestrator 
(RO) is implemented to send the RESTCONF request to the OSM module in the TSON Domain Controller. 
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Based on the TSON topology edge node exposed by the TSON DO, the MDO is able to split the request and 
sends the right configuration parameter to the TSON DO, the TSON DO initiates the deployment of the NFVs 
if necessary and sends the parameters to configure the TSON network to the TSON DC. The OSM module 
get the request and sends it to the TPC, which has an overview of global topology of the TSON network. The 
latter sends back to the OSM module the different nodes, ports and parameters to configure the end-to end-
path. The OSM module uses the OpenFlow APIs to send the appropriate OpenFlow message to the right SDN 
agent to configure the TSON node. 

 

Figure 3-11. TSON network integrated in the 5G OS. 

3.3 Technical Component 2: Flex-E 

3.3.1 Summary Description 

Flex-E interface technology [34] introduces the notion of “hard” slicing in the transport network, realising the 
concept of logically isolated Ethernet flows operating on common links but avoid influencing negatively the 
performance of each other in case of congestion. Furthermore, Flex-E can utilize fully the capacity of Network 
Processing Units (NPU) without waiting for future Ethernet rates to be standardised, while it supports a variety 
of Ethernet MAC rates independently of the Ethernet PHY rate being utilised. In this section, we provide 
technology primitives and functionalities while, the performance of a Flex-E demonstrator is evaluated in terms 
of achieved traffic protection and isolation, average throughput and latency. 

3.3.2 Used programmable platforms and APIs 

The Flex-E solution is demonstrated using PTN990 series of Huawei Optical Routers. PTN devices are 
primarily used on bearer networks that carry various services, such as mobile communication, enterprise users’ 
services. In more detail the OptiX PTN 990 is primarily used at the access or aggregation layers of a 
metropolitan transport network. It transports packet services on the network and converges them to an 
IP/MPLS backbone network. The Flex-E testbed description is provided in deliverable D3.1 [4]. The VRP 8.130 
software is used V100R008C10, with a special patch that enables the Flex-E functionality. Note that Flex-E 
only runs under diagnose mode and still is not available for commercial use. 

3.3.3 Function Design/Implementation/Evaluation 

Flex-E technology is introduced as a thin layer, known as Flex-Shim, being able to support data rates out of 
the conventional range offered by current Ethernet standards. The main idea behind Flex-E is to decouple the 
actual PHY layer speed from the MAC layer speed of a client. Flex-E is based on a time-division multiplexing 
mechanism that is able to drive the asynchronous Ethernet flows over a synchronous schedule over multiple 
PHY layers. The main operational components of Flex-E include the following: 
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 Flex-E Client is an Ethernet flow based on a MAC data rate that may or may not correspond to any 
Ethernet PHY rate. The MAC rates currently supported are 10, 40, and m x 25 Gb/s. 

 Flex-E Group is a group of Ethernet PHYs that are bonded together. The Optical Internetworking 
Forum (OIF) supports Flex-E groups composed of one or more bonded 100GBASE-R PHYs. Higher 
rates like 400 GbE are under development in the IEEE P802.3bs project and will be supported in 
future Flex-E releases. 

 Flex-E Shim is the layer that maps or de-maps the Flex-E clients over a Flex-E group. This procedure 
relies on a calendar-based slot scheduling. Essentially, a set of slots are assigned to each client, 
according to the MAC layer speed and group participation.  

As we described in deliverable D4.1, there are three operational scenarios supported by Flex-E, which relate 
in a different way the MAC layer speed with the corresponding PHY speed (higher or lower), allowing a distinct 
manner for multiplexing clients in time. These are a) bonding that allows a MAC layer speed higher than a 
single PHY by grouping multiple PHYs to serve a flow (e.g. support a 200G MAC over two bonded 100GBASE-
R PHYs); b) Sub-rating where MAC layer speed is less than the actual PHY; and c) channelisation which 
enables multiple Flex-E clients over a shared single PHY or bounded PHY. 

Hybrids of these scenarios are also possible, for instance a sub-rate of a bonded PHY supporting 250G MAC 
over three bonded 100GBASE-R PHYs. These options allow increased resource flexibility for 5G and fine-
tuning the offered rate depending on the usage. In this demonstrator, we will describe and evaluate the case 
of channelisation of a single 100G PHY. 

Demonstrator Description 

Flex-E operation 

Flex-E introduces a Shim layer responsible for the mapping of Flex-E clients (i.e. Ethernet flows) to groups of 
PHYs. The Flex-E Shim layer is positioned between the Ethernet MAC and the Physical Coding Sublayer 
(PCS) of the PHY layer, as depicted in Figure 3-12. Each layer supports: 

 Data Link Layer: a) Logical Link Control (LLC) for multiplexing network protocols over the same MAC, 
b) MAC Sublayer for addressing and channel access control mechanisms, and c) Reconciliation 
Sublayer (RS) that processes PHY local/remote fault messages. 

 PHY Layer: a) PCS performs auto-negotiation and coding, b) Physical Medium Attachment (PMA) 
sublayer performs framing, octet synchronisation/ detection, scrambling/descrambling, and c) 
Physical Medium Dependent Sublayer (PMD) is the transceiver that is physical medium depended. 

Each Flex-E client has its own separate MAC and RS above the Flex-E Shim, which operate at the client rate. 
The layers below the PCS are used intact as specified for Ethernet. As a first step in every Flex-E client flow, 
a 64b/66b encoding is performed to facilitate synchronisation procedures and allow a clock recovery and 
alignment of the data stream at the receiver. Then a procedure of idle insert/delete is performed. This step is 
necessary for all Flex-E clients in order to be rate-adapted, matching the clock of the Flex-E group according 
to IEEE 802.3. The rate of the adapted signal is slightly less than the rate of the Flex-E client in order to allow 
alignment markers on the PHYs of the Flex-E group. Then all the 66b blocks from each Flex-E client are 
distributed sequentially into the Flex-E group calendar where the multiplexing is performed. 

Flex-E calendar (Figure 3-12): For each Flex-E group, a calendar is responsible to assign 66b block positions 
on sub-calendars on each PHY, to each of the Flex-E clients. The calendar has a length of 20 slots per 100G 
of Flex-E group and a bandwidth allocation of 5 Gb/s granularity, where a client may have any combination of 
slots in a group. To facilitate the demux process, the calendar is communicated along with the data. There are 
two calendar configurations for each PHY of the Flex-E group: the A calendar configuration (encoded as 0) 
and the B calendar configuration (encoded as 1). The two calendars are used to facilitate reconfiguration. 
Calendar slot are logically interleaved. A link failure is generated towards all Flex-E clients in the group once 
any PHY of the group fails. A control function manages the calendar slot allocation for each Flex-E client and 
inserts or extracts the Flex-E overhead on each Flex-E PHY in the transmit/receive direction. Calendar 
scheduling between the PHYs is currently performed on a Round Robin fashion. The calendar scheduling 
mechanism and the ability to adjust the slot allocation for guaranteed user performance, enables Flex-E to 
precisely “slice” the transport network. 
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Figure 3-12: Flex-E layer between Ethernet MAC and PCS showing the FlexE Shim 
distribute/aggregate sub-layer in PCS/PMD. 

System and Experiment Description 

We demonstrate and evaluate Flex-E technology, while verifying the theoretical framework proposed by OIF. 
The system demonstrator under test, is depicted in Figure 3-13 where for the implementation of the testbed 
two Huawei Optix PTN 990 are used. A software patch on VRP V100R008C10, supports the necessary Flex-
E functionality. 

In principle channelisation enables multiple Flex-E clients over a shared single PHY or bounded PHY via the 
means of time division multiplexing in the Flex-Shim (e.g. support 150G and a 50 MAC over two bonded 
100GBASE-R PHYs). 

 

Figure 3-13: Flex-E demonstrator experimental setup. 

 

Figure 3-14: Flex-E allocated slots per channel (4 channels supported). 
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In this demonstrator one 100G link between the two routers is “splitted” using the Flex-E technology. The 
splitting is made by creating Flex-E channels. The Flex-E clients are identified using VLAN technology and 
each VLAN is mapped to a specific Flex-E channel. 

As presented in Figure 3-14 for the demonstrator we allocate time slots in two Flex-E channels, namely channel 
0 and Channel 2. The mapping of channels in Flex-E flows is made on a VLAN basis where for the current 
implementation the lower two bits of the channel ID and VLAN ID correspond to each other (e.g., VLAN 4 
maps to channel 0 and VLAN 5 to channel 1 and VLAN 6 in channel 2 and so on).  

In Figure 3-14 a sample channel configuration is presented for router 1 (R1 prompt) while a similar 
configuration also exists for router 2. In the example depicted, slots 5 to 9 are allocated in channel 2, while all 
the other slots (1-4 and 6-20) are allocated in channel 0. With this allocation channel 0 receives 15/20=3/4 
capacity (translated to scheduling opportunities) from the 100G interface, channel 2 receives 1/4 from the link 
capacity, while channels 1 and 3 are blocked. Because of the specific flow mapping implementation, channel 
0 will support not only VLAN 4 but also all VLAN-ids where the ending bits are 00 (like 0b000, which is VLAN 
8) and so on. 

To create multiple Ethernet flows with the necessary VLAN identification, traffic has been generated by using 
a Huawei 100GE traffic generator, which was controlled using Tesegine 2.0 V300R006C10B410 software. 

Using the Tesegine 2.0 traffic generator software, we were able to generate multiple concurrent flows with 
different configuration options of all the frames/packets fields (like src/dst MAC address, VLAN-id, src/dst IP 
address etc.). An example configuration is depicted in Figure 3-15. 

As a baseline experiment, we created two flows: Flow-1 (VLAN-id 4) that could be critical traffic and Flow-2 
(VLAN -id 6) being the background traffic. 

The goal of the demonstrator was to showcase the ability of Flex-E channelisation to provide precise capacity 
shares between the two competing channels/flows. Channel statistics were obtained using interface counters 
that were updated to report per channel reports like the one presented in Figure 3-16. 

Isolation guarantees: From all the experiments performed, perfect isolation characteristics were obtained were 
not only the capacity ratios were respected but also channels 1 and 3 were blocking the traffic not mapped to 
“open” Flex-E channels. Even though we only present here a representative subset of results, our conclusions 
apply to a wide range of network parameters tuning and specifications. 

 

Figure 3-15: Tesegine traffic generator 
configuration example. 

 

Figure 3-16: Per Flex-E channel statistics reports. 
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Figure 3-17: Network slicing performance using Flex-E channels over 100G PHY link for vlan4:15slots 
and vlan 6: 5 slots out of 20. 

 

Figure 3-18: Delay and jitter results for two different Flex-E channels. 

In Figure 3-17 we present the evaluation results of the experiment described above with two Flex-e channels 
serving to Ethernet flows that are identified using their VLAN-id. As we can see, the 100G link is precisely 
sliced exploiting time scheduling on the Flex-Calendar. Flex-E channel 0 throughput is 75 Gb/s on average 
while channel 2 throughput is 25 Gb/s on average (5 slots out of 25). 

An important observation however is that although flex-e technology is able to provide precise throughput 
guarantees per flow using very low level slicing, is not able to differentiate delay and jitter per channel for each 
Flex-E client. This phenomenon was however expected and is depicted in Figure 3-18 where, as we can 
observe, both flows experience similar delay and jitter performance. 

3.3.4 Packaging for the 5G OS 

Currently, the control plane for the end-to-end provisioning of a Flex-E pipe is an open issue, yet to be specified. 
A GMPLS signalling through RSVP-TE approach is proposed in [12], while a software defined network (SDN) 
control with out-of-band signalling can be a potential alternative candidate. In both GMPLS and SDN cases, 
new data models need to be devised that expose the Flex-E information and functionalities to the control plane. 
Although the design of YANG models is possible over RSVP, new YANG models are expected to emerge 
specialised for Flex-E. As in all control plane models, the design primitives for the Flex-E control plane are 
security, scalability and fast convergence. 

To on-board on 5G OS a possible service descriptor should include: 

1) Flex-E Group provisioning, configuration and instantiation operations: Routers must advertise the type 
of Flex-E support that they offer. The current calendar allocation and information like link delay and 
node delay. Regarding capabilities exposure auto-negotiation procedures also need to be defined. 

2) Flex-E calendar scheduling: The control plane must be able to provide an efficient mechanism for the 
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optimal assignment of PHYs to a specific group, while also consider for the optimal slot allocation in 
the group calendar for each Flex-E client. 

3) Establishment of Flex-E multi-hop paths: Existing solutions consider a pre-configured Command-Line 
Interface (CLI) based Flex-E group configuration and client assignment. Note that the most important 
functionality in order to have a functional Flex-E setup is that for each PHY the mux and demux share 
the same sub-calendar. Otherwise, it would be impossible to decode the slot information to a specific 
Flex-E client. In a multi-hop setup this information sharing can be challenging. 

4) Dynamic calendar switching configurations: Control plane must support dynamic switching between 
calendar configurations (A or B) and allow modifying the configuration of Flex-E clients into calendar 
slots, based on SLAs and performance criteria. 

3.4 Technical Component 3: X-Ethernet 

3.4.1 Summary Description 

X-Ethernet is a Huawei proprietary technology, where X stands for extended distance, expanded granularity 
and extremely low latency. X-Ethernet introduces Ethernet PCS switching based on the interface offered by 
Flexible-Ethernet. The switch device will redirect Flex-E Clients (64B/66B block streams) from its inbound port 
to its outbound port without waiting for the arrival of the whole Ethernet frame for FCS checksum and 
forwarding decision with table lookup. Therefore, all the time consuming procedure, such as 
encapsulation/decapsulation, queuing and table lookup can be removed. 

3.4.2 Used programmable platforms and APIs (WP3) 

The X-Ethernet physical testbed description together with X-Ethernet technology primitives of operation are 
provided in deliverable D3.2. For each X-Ethernet switch the solution is based on  FPGA board, six 100G 
CFP2 optical module slots, two 10G SFP+ optical module slots, one Ethernet interface slot and one RS232 
interface. The RS232 is for device management and control. In the following, we provide experimentation 
results from the execution of three test scenarios that were carried out and showcase the ability of X-Ethernet 
technology to satisfy challenging switching requirements for the integrated 5G-PICTURE network. 

3.4.3 Function Design/Implementation/Evaluation 

Experiment Environment 

The experiment environment is shown in Figure 3-19. Three X-Ethernet prototypes are connected to each 
other and formed a network. A controller (PC) configures each of the devices via the RS232 port on each 
device. A CPRI tester is used to generate CPRI option 7 traffic [35]. A network performance tester is used to 
generate Ethernet traffic with 100 Gb/s maximum bit rate. CPRI is injected into the XE No.1 device and 
transport to XE No.2, then loop back to the CPRI tester. The Ethernet traffic pass through three XE devices 
one by one and loop back to the network performance tester. It should be noted that the connection between 
XE devices is though 100G links. Particularly, CPRI and Ethernet traffic share the same 100G link between 
XE No.1 and XE No.2. Moreover, the connection between Network performance tester and XE devices are 
also 100G link. Network performance tester generate an Ethernet traffic that has an effective data rate ranges 
from 0 to 100 Gb/s. 

 

Figure 3-19: Experiment topology. 

Phase 2: XE network

XE No.1 XE No.2 XE No.3

CPRI tester

 CPRI

Ethernet

Network Performance Tester

Controller

 CPRI

Ethernet 
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Test case 1: Ultra-low Latency Test for X-Ethernet Device as P node. 

Objective Testing latency of X-Ethernet device as P node 

Test instrument Traffic Generator 

Configuration 

 

 

Figure 3-20: Test environment 1. 

 

Figure 3-21: Test environment 2. 

Test Step 

a) Setup the test environment as shown in Figure 3-20. 

b) Configure end-to-end Ethernet traffic flow between XE1 and XE4 (Flex-E 
tunnel allocated 2/10 slots), the path is XE1-XE3. The TestCenter generate 
and send packets of length 128, record traffic latency T1. 

c) Setup the test environment as shown in Figure 3-21. 

d) Configure end-to-end Ethernet traffic flow between XE1 and XE4 through 
XE2, the path is XE1-XE3-XE2.The TestCenter generate and send packets 
of length 128, record traffic latency T2. 

e) Modify traffic packet length to 1518byte in sequence, and repeat the above 
operation, then record traffic latency. 

Test Success Criteria 
a) The latency of P nodes can be calculated by the following formula: (T2 - T1).  

b) Calculate and record forwarding latency of P nodes. 

Test Result 

Slot 
number 

Packet 
length 

T1 (μs) T2 (μs) 
Delay of P 
nodes (μs) 

2 128 byte 2.988 3.539 0.551 

 1518 byte 4.309 4.903 0.594 

10 128 byte 2.116 2.683 0.567 

 1518 byte 2.59 3.156 0.566 

 

For the packet streams of different packet length at different rates, X-Ethernet exhibits its ultra-low latency 
forwarding capability at around 0.5 μs for P node. Compared to the classic router/switch (30 μs ~ 200 ms), X-
Ethernet has a huge advantage in carrying latency sensitive services. Thanks to its L1.5 Non Stop Switching 
mechanism, all the time consuming procedures like table lookup, queuing, buffering, etc., are removed. What’s 
more, due to its TDM like mechanism, it provides end-to-end hard isolation pipe, which guarantees a 
nanosecond level jitter in the transmission. 
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Test Case 2: Test Transport Capacity of CPRI over X-Ethernet Device. 

Objective Verify FlexE client number of the X-Ethernet device 

Test instrument CPRI traffic generator 

Configuration 

XE3XE1 XE2

Interface 1(CPRI 
Option7)

Interface 2(CPRI 
Option7)

1-1 3-1 3-2 2-1

1-2 2-2

CPRI TG

 

Figure 3-22: Test environment. 

Test Step 

a) Setup the test environment as shown in Figure 3-22. 

b) Create FlexE Tunnel 1 and FlexE Tunnel 2 between the NNI(FlexE) of XE1 

and XE2. Every FlexE Tunnel has 2 slot. 

c) Create the Ethernet traffic flow 2 (10GE) between the interface 1-2 of XE1 and 
the interface 2-2 of XE2, which is carried by the Tunnel 2. Start the TestCenter. 

d) Create the CPRI traffic flow 1(CPRI Option7) between the interface 1-3 of XE1 
and the interface 2-2 of XE3, which is carried by the Tunnel 1.Start the 
MST5800. 

Test Success 
Criteria 

No alarm in CPRI traffic generator. 

Test Result No alarm in CPRI traffic generator. 

The Common Public Radio Interface (CPRI) is the major FH traffic in 4G era. Many legacy devices still depend 
on CPRI. It also has strict requirement on the transport technology, like latency and frequency synchronisation. 
The test results shows that CPRI traffic can carried over X-Ethernet network. Combined with previous test 
case, X-Ethernet can carry CPRI and Ethernet/Packet traffic at the same time. Thus X-Ethernet can realize 
carrying FH and backhaul traffic on an integrated network. 
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Test Case 3: Multi-service Isolation Function Test of the X-Ethernet Device 

Objective Testing FlexE multi-service isolation function of the X-Ethernet device 

Test instrument Traffic Generator 

Configuration 

XE3XE1 XE2

Traffic 
Generator

Interface 1(10GE) Interface 2(10GE)

FlexE FlexE

Interface 3(100GE) Interface 4(100GE)

1-1 3-1 3-2 2-1

1-2 1-3 2-3 2-2

FlexE Tunnel2
FlexE Tunnel1

FlexE Tunnel3

 

Figure 3-23: Test environment. 

Test Step 

a) Setup the test environment as shown in Figure 3-23. 

b) Create three FlexE Tunnel 1/2/3 between XE1 and XE2, which allocated 2/4/4 
slots. 

c) Create 3 Ethernet traffic flow 1/2/3 between the XE1 and the XE2, which are 
carried by the above three FlexE tunnel 1/2/3 respectively. Traffic flow 1: the 
nterface 1-3 to the interface 2-3; traffic flow2: the interface 1-2(VLAN100) to 
the interface 2-2(VLAN100); traffic flow3: the interface 1-2(VLNA200) to the 
interface 2-2(VLAN200). 

d) The TestCenter creates three bidirectional Ethernet traffic flow described 
above, traffic rates are 10G/20G/20G respectively. The TestCenter generates 
three bidirectional traffic flow described above, and then check whether the 
TextCenter can receive traffic normally. 

e) The TestCenter generates and send three traffic flow described above, and  
increases traffic flow 2 rate to 30G, and then check whether the TextCenter 
can receive traffic normally. 

Test Success 
Criteria 

a) The TestCenter can receive the three traffic flow normally, and no packet loss. 

b) There same packet loss in traffic flow 2. The traffic flow 1/3 are normally, no 
packet loss. 

Test Result No packet loss in the test. 

The test result shows that overloaded in one X-Ethernet channel will not affect other traffic streams in other X-
Ethernet channels. Thus, the hard isolation features of X-Ethernet can be demonstrated. For practical 
deployments, the network with X-Ethernet technology can carry different kinds of services, e.g. mobile 
transport, residential access and leased line services. Each of these services can be hard isolated, and will 
not be affected by each other. 

3.4.4 Packaging for the 5G OS 

To enable programmability of the X-Ethernet solution a new southbound protocol should be designed or 
exploit/device a new NETCONF protocol-based solution [36]. In the case of NETCONF protocol, a NETCONF 
server should operate on the switching device to interpret messages send from a remote SDN controller 
(implementing the NETCONF client). NETCONF is connected oriented using TCP while messages are 
encoded in XML and encrypted by SSH. An SDN controller like ODL or RYU could be used to implement this 
functionality and be directly connected to the rest of the 5G OS solution. 
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Table 3-1: NETCONF protocol operations. 

Operation Description 

<get> Retrieve running configuration and device state information 

<get-config> Retrieve all or part of a specified configuration datastore 

<edit-config> Edit a config. datastore by creating, deleting, merging or replacing content 

<copy-config> Copy an entire configuration datastore to another configuration datastore 

<delete-config> Delete a configuration datastore 

<lock> Lock an entire configuration datastore of a device 

<unlock> Release a configuration datastore lock 

<close-session> Request graceful termination of a NETCONF session 

<kill-session> Force the termination of a NETCONF session 

 

Figure 3-24: NETCONF-based programmability of X-Ethernet switches. 

A simplified version of the 5G OS integrated with a NETCONF based solution for the programmability of the 
X-Ethernet solution is depicted in Figure 3-24. Depending on the NETCONF approach with the appropriate 
YANG models RESTCONF API can also be exploited. RESTCONF is a REST like protocol running over HTTP 
for accessing data defined in YANG using datastores defined in NETCONF. RESTCONF is an IETF draft that 
describes how to map a YANG specification to a RESTful interface. 

Note however that as X-Ethernet is a Huawei proprietary experimental solution and the focus in the 
development phase is on the dataplane operations. No YANG models are currently available or under 
development. However, these are planned to be implemented the following period, exploiting NETCONF 
protocol enabling integration with the 5G OS. 

For an orchestration and management system like 5G-OS a possible X-Ethernet service descriptor should 
include: VLAN ID, Flex-E client bandwidth, Flex-E group ID, PHY ID, Flex-E calendar slot number, performance 
monitoring information, system-type. data mode, client signal type. 
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3.5 Technical Component 4: Segment Routing 

3.5.1 Summary Description 

In 5G-PICTURE TSON, Flex-E and X-Ethernet are the key enabling technologies that are used to provide 
transport network slicing functionality for the wired network. These can be used for all types of transport 
network (namely FH, MH and BH as described in 3GPP [37]) and support connectivity between the 
disaggregated RAN functions. However, although these technologies are able to provide throughput 
guarantees for each slice of the transport network, they are not able to meet other objectives like for example 
delay guarantees or fast routing protocol convergence times. In 5G-PICTURE we exploit segment routing as 
a technology that is able to provide service guarantees and support advanced functionalities for the virtualised 
network in Layer 3. 

Segment routing (SR) is a new protocol designed to forward data packets on a network based on the source 
based routing paradigm. However, instead of performing routing based on a node to node basis, segment 
routing divides a network path into several segments. Each forwarding path is constructed based on 
sequentially arranged segment list. A segment may be associated with a service instruction, with a node, a 
link or a path. Segment routing is defined in IETF RFC 8402 [38] and more information can be also found in 
[39] and [40]. Segment routing is expected to play a key role in deterministic networks like the ones defined by 
IETF in the Detnet working group [41] and networks where “plain” VPN solution are not enough, since besides 
encryption by means of performance existing VPN solutions are actually best effort and are not able to provide 
service guarantees to the virtual “sliced” network. Even when MPLS-TE solutions are deployed the end-to-end 
network performance is subject to the routing protocol behaviour and the policy used. The need for enhanced 
VPN solutions is described by IETF in [42]. 

Segment routing offers a number of benefits like simplification of the control plane of MPLS type of networks, 
efficient topology independent-loop-free alternate fast re-routing protection, higher network capacity expansion 
capabilities, smooth integration of SDN technology while it can also be used as an enabling technology for 
deterministic networking. 

For this technical component analysis, a segment routing testbed was built based on Linux container 
technology and virtual router infrastructure. In the following subsections we provide background information 
for the basic segment routing functionality and terminology used, we analyse the testbed built, together with 
the configuration primitives. Relevant information for the functionality of the testbed, messaging and the 
protocol signalling are also presented. 

3.5.2 Used programmable platforms and APIs 

For the goals of this technical component analysis, no technology specific HW platform was required and all 
the infrastructure has been built using virtualisation technology. In more detail, a single Ubuntu Linux 16.04 
Virtual Machine has been used to host a LXD hypervisor to create and to manage a number of LXC containers. 
LXC is an operating-system-level virtualisation method for running multiple isolated Linux systems on a control 
host using a single Linux kernel5. Table 3-2 summarizes the basic software tools used to implement the 
virtualised segment routing testbed. The VM was running over the VirtualBox hypervisor system over a 
commercial hardware equipped with Intel Core i7-6600U, 2.6 GHz with 16GB memory and 64bit OS. 

Virtual routers based on the FRRouting (FRR) software package6 were deployed in LXC containers (a single 
LXC container hosts a single instance of a FRR router) and connectivity between routers was achieved using 
Linux bridging. FRRouting (FRR) is an IP routing protocol suite for Linux and Unix platforms which includes 
protocol daemons for BGP, IS-IS, LDP, OSPF, PIM, and RIP. FRR’s seamless integration with the native 
Linux/Unix IP networking stacks makes it applicable to a wide variety of use cases including connecting 
hosts/VMs/containers to the network, advertising network services, LAN switching and routing, Internet access 
routers, and Internet peering. In the context of the H2020-ICT-2014 project 5GEx an experimental support of 
Segment Routing for the MPLS dataplane in FRR was devised, which is the one we also exploit for this 
demonstrator. 

 

                                                      
5 https://linuxcontainers.org/lxc/ and https://linuxcontainers.org/lxd/   

6 https://frrouting.org/  

https://linuxcontainers.org/lxc/
https://linuxcontainers.org/lxd/
https://frrouting.org/
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Table 3-2: Basic software components used to build a virtual segment routing testbed. 

Key software component Description 

LXD 

https://github.com/lxc/lxd-pkg-ubuntu 

LXD is a lightweight container hypervisor. LXD uses LXC under the covers for 
some container management tasks. However, it keeps its own container 
configuration information and has its own conventions, so that it is best not to 
use classic LXC commands by hand with LXD containers. 

LXC 

https://github.com/lxc/lxc  

https://www.sdxcentral.com/cloud/con
tainers/definitions/containers-vs-vms/ 

LXC (Linux Containers) is an operating-system-level virtualisation method for 
running multiple isolated Linux systems (containers) on a control host using a 
single Linux kernel. A daemon that maintains the compartmentalisation 
between containers, while connecting their workloads to the kernel. 

FRR routing (software router) 

https://frrouting.org/ 

FRR is a Quagga fork and is Linux routing software package that provides 
TCP/IP based routing services with routing protocols support such as RIPv1, 
RIPv2, RIPng, OSPFv2, OSPFv3, IS-IS, BGP-4, and BGP-4+. FRR also 
supports special BGP Route Reflector and Route Server behavior. In addition 
to traditional IPv4 routing protocols, FRR also supports IPv6 routing protocols 
and new features like Segment routing. 

3.5.3 Function Design/Implementation/Evaluation 

 Primitives of Segment Routing Technology 

Segment routing divides a network path into several segments and assigns a segment ID to each segment 
and network forwarding node. The segments and nodes are sequentially arranged (segment list) to form a 
forwarding path. A summary table with the basic terminology used in segment routing is depicted in Table 3-3. 

Segment routing encodes the segment list identifying a forwarding path into a data packet header. The 
segment ID is transmitted along with the packet. After receiving the data packet, the receive end parses the 
segment list. If the top segment ID in the segment list identifies the local node, the node removes the segment 
ID and proceeds with the follow-up procedure. If the top segment ID does not identify the local node, the node 
uses the Equal Cost Multiple Path (ECMP) algorithm to forward the packet to a next node.  

A prefix segment indicates a destination address, and an adjacency segment indicates a link over which data 
packets travel. The prefix and adjacency segments are similar to the destination IP address and outbound 
interface, respectively, in conventional IP forwarding. Combining prefix (node) SIDs and adjacency SIDs in 
sequence can construct any network path. Every hop on a path identifies a next hop based on the segment 
information on the top of the label stack. 

How SR information is distributed in the network 

The SR architecture supports distributed, centralised, or a hybrid control plane. In the centralised case, an 
SDN solution could be exploited where for example BGP can be used to distribute SR information from a SDN 
controller, through Network Configuration Protocol (NETCONF), Path Computation Element Communication 
Protocol (PCEP) or BGP. In the decentralised case, segments are allocated and signalled by IGP protocols 
like IS-IS or OSPF. Segment routing uses an IGP to advertise topology information, prefix information, a 
segment routing global block (SRGB), and label information. To complete the preceding functions, the IGP 
extends some TLVs of protocol packets. 

Over which dataplane technologies segment routing can operate? 

For the moment an SR solution could smoothly be integrated and operate over two data-plane technologies, 
namely SR over MPLS (SR-MPLS) and SR over IPv6 (SRv6). In this demonstrator we will describe the case 
of SR over MPLS, where SR information is distributed using the OSPF routing protocol. 

 

 

 

https://github.com/lxc/lxd-pkg-ubuntu
https://github.com/lxc/lxc
https://www.sdxcentral.com/cloud/containers/definitions/containers-vs-vms/
https://www.sdxcentral.com/cloud/containers/definitions/containers-vs-vms/
https://frrouting.org/
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Table 3-3: Segment routing basic terminology. 

Term Description 

Segment 

an instruction a node executes on the incoming packet (e.g. forward packet according 
to shortest path to destination, or, forward packet through a specific interface, or, 
deliver the packet to a given application/service instance). Is represented by a Segment 
Identifier (SID). 

SR Path 

 

Connects an SR ingress to an SR egress, Can be different from the least cost path and 
contains one or more SR Segments. 

Segment Identifier 
(SID) 

Identifies the path fragment that the packet follows, while it can have node-local or 
domain-wide (a.k.a., global) significance. 

SR domain  is a collection of SR capable devices. 

SR-MPLS SID  
an MPLS label or an index value into an MPLS label space explicitly associated with 
the segment. 

SRv6 SID an IPv6 address explicitly associated with the segment. 

Active Segment 
the segment that is used by the receiving router to process the packet. In the MPLS 
data plane, it is the top label. In the IPv6 data plane, it is the destination address. 

PUSH 

the operation consisting of the insertion of a segment at the top of the segment list. In 
SR-MPLS, the top of the segment list is the topmost (outer) label of the label stack. In 
SRv6, the top of the segment list is represented by the first segment in the Segment 
Routing Header. 

NEXT 
when the active segment is completed, NEXT is the operation consisting of the 
inspection of the next segment. 

CONTINUE 

the active segment is not completed; hence, it remains active. In SR-MPLS, the 
CONTINUE operation is implemented as a SWAP of the top label [RFC3031]. In SRv6, 
this is the plain IPv6 forwarding action of a regular IPv6 packet according to its 
destination address. 

SR Global Block 
(SRGB) 

Segment Routing Global Block (SRGB) is the range of labels reserved for segment 
routing. SRGB is local property of a segment routing node. In MPLS, architecture, 
SRGB is the set of local labels reserved for global segments. In segment routing, each 
node can be configured with a different SRGB value and hence the absolute SID value 
associated to an IGP Prefix Segment can change from node to node. 

SR Local Block 
(SRLB) 

local property of an SR node. If a node participates in multiple SR domains, there is 
one SRLB for each SR domain. In SR-MPLS, SRLB is a set of local labels reserved for 
local segments. 

Global Segment 
The instruction associated with the segment is defined at the SR domain level. A 
topological shortest-path segment to a given destination within an SR domain is a 
typical example of a global segment. 

Local Segment 

In SR-MPLS, this is a local label outside the SRGB. It may be part of the explicitly 
advertised SRLB. In SRv6, this can be any IPv6 address, i.e., the address may be part 
of the SRGB, but used such that it has local significance. The instruction associated 
with the segment is defined at the node level. 

IGP Segment 
the generic name for a segment attached to a piece of information advertised by a link-
state IGP, e.g., an IGP prefix or an IGP adjacency. 

IGP-Node 
Segment 

an IGP-Node segment is an IGP-Prefix segment that identifies a specific router (e.g., 
a loopback). Also referred to as "Node Segment". 

IGP-Prefix 
Segment 

an IGP-Prefix segment is an IGP segment representing an IGP prefix. When an IGP-
Prefix segment is global within the SR IGP instance/topology, it identifies an instruction 
to forward the packet along the path computed using the routing algorithm specified in 
the algorithm field, in the topology, and in the IGP instance where it is advertised. Also 
referred to as "prefix segment". 
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 Testbed description 

In Figure 3-25 the testbed built to present segment routing solution feasibility is presented. In more detail the 
testbed is comprised by 4 routers (labelled as R1, R2, R3 and R4) and 2 Hosts (H1, H2). Both the routers and 
the hosts were deployed in Linux LXC containers, using LXD hypervisor while, to bridge the different network 
namespaces, Linux bridging was used. For example in order to connect eth1 interface from host H1 with the 
eth1 interface of R1 and so on. The goal of this demonstrator is to verify the proper functionality of the segment 
solution, so it can be exploited in overall network sliced based solutions. The SR system demonstrated here 
is based on the extended FRR routing open source solution 7. 

 
Figure 3-25: Segment routing testbed. 

 Experimentation results 

In the data plane the solution we are using operates on top of MPLS. In Linux specific kernel modules, need 
to be enabled to support MPLS functionality. In principle SR can operate directly over MPLS with the main 
forwarding mechanism, where SIDs are encoded as MPLS labels. The segment list is encoded as a label stack 
and the segment to be processed is at the stack top. For the distribution of the SR segment information, OSPF 
link-state routing protocol is used that is extended according to [43]. 

In each router besides the normal network interfaces we also configured the loopback interface that was used 
to support the node-SID. In router R1 the loopback was 1.1.1.1, for router R2 the loopback was 2.2.2.2 and so 
on. In Figure 3-26 the OSPF configuration is depicted for router R1. Global-block field is used to configure the 
SRGB, node-msd is used for the maximum SID (labels) that can be stacked and the prefix is the SR Prefix 
Segment Identifier (with an index used for backward compatibility) and is mapped to the loopback. 

Figure 3-26: Router R1 OSPF configuration. 

! 

! Zebra configuration saved from vty 

!   2018/11/03 00:56:43 

! 

frr version 6.0 

frr defaults traditional 

! 

hostname R1 

log syslog informational 

! 

line vty 

                                                      
7 https://github.com/FRRouting/frr/blob/master/doc/developer/ospf-sr.rst 

https://github.com/FRRouting/frr/blob/master/doc/developer/ospf-sr.rst
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! 

! 

interface lo 

  ip ospf area 0.0.0.0 

! 

interface eth1 

  ip ospf area 0.0.0.0 

! 

interface eth2 

  ip ospf area 0.0.0.0  

! 

interface eth3 

  ip ospf area 0.0.0.0 

! 

router ospf 

  ospf router-id 1.1.1.1 

  capability opaque 

  router-info area 0.0.0.0 

  segment-routing on 

  segment-routing node-msd 16 

  segment-routing global-block 20000 29999 

  segment-routing prefix 1.1.1.1/32 index 100 no-php-flag 

! 

Segment Routing requires some additional capabilities of the router to be advertised to other routers in the 
area. These SR capabilities are advertised in Router Information Opaque LSA message. In Figure 3-27 a 
sample LSA message sent by R1 is depicted presenting the relevant information after a network change. As 
we can see the relevant SR information is correctly included for Adj-SID sub TLV. 

 

Figure 3-27: OSPF-SR LSA message. 
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Based on the OSPF message advertisements in all the routers the correct routing tables are constructed like 
also the relevant MPLS tables. In Figure 3-28 the IP routing table (left hand-side) and MPLS table (right hand-
side) are presented. As we can see all the routing information for all the networks depicted in Figure 3-25 is 
correctly advertised through OSPF. The same holds for the Node-SIDs and Adj-SIDs that are depicted as SR 
type in the MPLS table of the router. 

 

 

Figure 3-28: R4 routing table (left) - R4 MPLS table (right). 

In all tests, to generate MPLS tagged traffic from the hosts, we used the open source Scaby Python library 8. 

Using the command line of FRR we can also verify that the correct SR information is advertised in the network. 
In Figure 3-29  the relevant SR information is depicted as stored in the R4 router using the show ip ospf 

database segment-routing json command. 

Figure 3-29: SR database information for router R4. 

{ 

  "20100":{ 

    "inLabel":20100, 

    "nexthops":[ 

      { 

        "type":"SR", 

        "outLabel":20100, 

        "distance":150, 

        "nexthop":"10.3.0.1" 

      } 

    ] 

  }, 

  "20200":{ 

    "inLabel":20200, 

    "nexthops":[ 

      { 

        "type":"SR", 

        "outLabel":20200, 

        "distance":150, 

        "nexthop":"10.4.0.2" 

      } 

    ] 

  }, 

  "20300":{ 

    "inLabel":20300, 

    "nexthops":[ 

      { 

        "type":"SR", 

        "outLabel":20300, 

        "distance":150, 

        "nexthop":"10.4.0.2" 

      } 

                                                      
8 https://github.com/secdev/scapy  

https://github.com/secdev/scapy
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    ] 

  }, 

  "20400":{ 

    "inLabel":20400, 

    "nexthops":[ 

      { 

        "type":"SR", 

        "outLabel":3, 

        "distance":150, 

        "nexthop":"4.4.4.4" 

      } 

    ] 

  }, 

  "50000":{ 

    "inLabel":50000, 

    "nexthops":[ 

      { 

        "type":"SR", 

        "outLabel":3, 

        "distance":150, 

        "nexthop":"10.3.0.1" 

      } 

    ] 

  }, 

  "50001":{ 

    "inLabel":50001, 

    "nexthops":[ 

      { 

        "type":"SR", 

        "outLabel":3, 

        "distance":150, 

        "nexthop":"10.3.0.1" 

      } 

    ] 

  }, 

  "50002":{ 

    "inLabel":50002, 

    "nexthops":[ 

      { 

        "type":"SR", 

        "outLabel":3, 

        "distance":150, 

        "nexthop":"10.4.0.2" 

      } 

    ] 

  }, 

  "50003":{ 

    "inLabel":50003, 

    "nexthops":[ 

      { 

        "type":"SR", 

        "outLabel":3, 

        "distance":150, 

        "nexthop":"10.4.0.2" 

      } 

    ] 

  } 

} 

 

We highlight that, since few SR implementations exist, this is an experimental support for SR in FRR, more 
details for the limitations are described in [44]. Although the analysis presented is representative for the issue, 
Segment Routing (SR) protocol and its ability to forward data packets based on source routing paradigm 
makes it as an appealing technology that is able to meet challenges in future transport networking. 

3.5.4 Packaging for the 5G OS 

In the case of SR, the interaction with the 5G OS depends on the control plane solution used. If an SDN 
solution is used to configure SR in each router of the network, this could be made through BGP or NETCONF. 
Information carried would be relevant with SR Node-SID, Adj-SIDs, loopback and interface network 
configuration etc., but also to the status of the network. In the case for example a link is down or a node is 
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down then the SDN controller needs to reconfigure everything. If, on the other hand, the SR control plane is 
exploiting an IGP solution like OSPF or IS-IS, then the 5G OS needs to act only on the management plane to 
enable the necessary OSPF features. 

3.6 Technical Component 5: Open Packet Processing (OPP) 

3.6.1 Summary Description 

This section describes the functionalities provided programming the Open Packet Processor (OPP) engine 
described in deliverable 3.1 [4]. In particular, two different functionalities are described. The first is a stateful 
load balancer, while the second is a network function for handover management and will be used to provide 
session continuity during the railway demo. 

3.6.2 Used programmable platforms and APIs 

The functions presented in this section have been designed using as target platform the OPP presented in 
section 3.3 of deliverable D3.1 [4] and section 2.4 of deliverable D3.2 [5]. While now the design of the two 
functionalities is based on a table based configuration of the OPP pipeline, CNIT is currently developing a 
Domain Specific Language called XTRAlang (see section 3.4.3 of deliverable D3.2), which will facilitate the 
design of network functions to be executed by the OPP engine. 

3.6.3 Function Design/Implementation/Evaluation 

 Load-driven forwarding load balancer 

This network function implements a distributed load balancing algorithm designed for the widely used multi-
rooted topologies (e.g. leaf-spine, fat trees). It uses special probes, which can be piggybacked on data or 
dedicated telemetry packets, which propagate utilisation information through the network. Probes frequency is 
adaptive and based on the estimation of flows’ weight, i.e. lower the utilisation, and lower the probe frequency. 
This information is stored in the edge/aggregation switches, while the core switches only propagate the 
information enriching it with their estimations. In this way, every edge switch has its updated estimation of the 
best path for a given destination as its best-hop. Flows are divided in flow lets: bursts of packets belonging, 
for example, to the same 5-tuple, and divided by a significant amount of time (e.g. an inter-packet gap greater 
than 2*RTT). By using flow let granularity, we can better utilise network resources especially in the presence 
of heavy hitter flows.  

3.6.3.1.1 Design 

Probes origin and replication. Each leaf sends probes to all the uplinks that connect it to the spines. Once 
the probes reach the spines, they add path information to the utilisation field and then replicate the packets 
sending them to all the leaves they see below, except the sender. When the leaves get the probe, they keep 
the information stored in and drop the packet.  

Probe frequency. Probe frequency (Fp) is determined in an adaptive way. The leaves take a rate estimation 
in their up ports (used also for probing) and this estimation is quantised in such a way that if the rate is high, 
the probe frequency increases. Fp is packets dependent, i.e. it is measured in incoming-packets/probe, e.g. Fp 

= 10 means that a probe will be sent every 10 packets received. 

Probe information. A probe utilisation header is composed of two fields: 

1. Leaf-id. The leaf id is a number identifying the leaf which originated the packet; 

2. Utilisation. The utilisation field contains the estimated incoming utilisation of the link. 

Every switch maintains a link utilisation estimator per each port connected to the core network. The estimator 
is an Exponential Weighted Moving Average (EWMA) specified by this relation:  

Unow = (1 - µ) * P + µ * Ulast, 

where Unow is the actual estimator, Ulast is the previous estimated value and P is the dimension in bytes of the 
packet. The µ parameter is a constant between 0 and 1 that adjusts the steepness of the exponential. Globally 
this estimator is a first order Infinite Impulse Response (IIR) filter with impulse response h(P) = (1 - µ) * µP. 
The filter gives exponentially less weight to previous samples and it has a linear dependence with the delta of 
timestamps. In practice, if the packets entering the filter are close together (i.e. µ near to 1), the weight moves 
towards the previous samples of the estimator. On the contrary, if the packets are distant (i.e. µ near to 0), the 
weight moves towards the newest samples. In fact, the variation of the timestamps controls the steepness of 



 

5G-PICTURE Deliverable  

 

H2020-ICT-2016-2017-762057 Page 65 of 104 30. Nov. 2018 

 

the exponential. These properties assure a rapid response to rate changes. Finally, in order to get the actual 
rate estimation, it is enough to divide the estimator by the delta of timestamps. Actually, making tests on the 
effective implementation of the filter, it appeared that the TCP bursts had a considerable variance, so instead 
of a single sample, it is provided to the filter an average on a certain amount of packets, e.g. 20. 

Spines have these estimators as well. As opposed to leaves, they do not store the information about the best-
hop for a given leaf, because when spines receive a packet belonging to a leaf, they can forward it through the 
only one link that connects to it. When a probe crosses a spine, the spine adds his utilisation estimation to the 
utilisation header, propagating the probe to the other leaves. For example, Figure 3-30 shows how the probe 
replication would be in a 3-to-2 leaf-spine topology. 

 
Figure 3-30: Probes logic. 

3.6.3.1.2 Implementation 

This use case requires the usage of four OPP stages to handle all the operations, even if the main logic of the 
load-driven forwarding algorithm is handled in the last stage. Figure 3-31 shows the pipeline describing the 
application. 

 

Figure 3-31: OPP pipeline. 

There are three main paths between tables that a packet can follow: 

1. Packets from host ports, after entering Table 0, go to Table 1 to discover to which leaf is intended the 
packet. Then they are directly sent to Table 3 for being forwarded. 

2. Probes end their journey in Table 0: the utilisation information is stored in the appropriate registers 
and then the packet is dropped. 

3. Packets from network ports, after entering table 0, go to Table 2 where they will be used as input for 
EWMA measuring. If Table 0 sends a special metadata, then it triggers a probe, which will be processed 
and sent in Table 2. In both cases the packets are sent to Table 3 and forwarded ordinarily to host ports. 
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 Handover management for session continuity 

One of the network functionalities that will be implemented using OPP is the handover management between 
the Typhoons transport nodes installed in the train and those installed in the towers for the 5G-PICTURE 
Railway demonstration. The OPP nodes will be used to guarantee the session continuity while the train is 
moving. Figure 3-32 shows a high-level picture of this network infrastructure. 

The users travelling in the train can connect to the internet using the Access Points (APs) deployed in the train. 
The Various APs are connected to a switch that should forward the traffic to the two Typhoon nodes (T1 and 
T2). The T1 and T2 nodes are connected to some of the Typhoon i nodes deployed close to the railway. These 
nodes are connected using the TransPacket switches to a router via the OPP-2 node. 

Since the connectivity of the T1 and T2 nodes change over time while the train is moving, a mechanism is 
needed to detect which of the two nodes is able to forward traffic at that time and forward the traffic only to the 
connected node. We planned to deploy an OPP node (OPP-1 in Figure 3-32) to monitor the connection state 
of the two typhoon nodes and to forward the traffic. As described in deliverable D3.1 [4] the OPP functionalities 
are designed as eXtended Finite State Machine (XFSM). In particular, for OPP-1 the designed functionalities 
are the following: 

1. Periodically send probes packets (e.g. ICMP ping) toward the OPP-2 node to detect if the connection 
of a specific Typhoon node link is active; this functionality is performed by an XFSM that provides the 
active links as a metadata for the second XFSM. 

2. The second XFSM performs the load balancing of the incoming traffic. When only one link is active, it 
sends all the traffic to the active link, otherwise it split the traffic between the two active connections. 

Each of the Typhoon i nodes deployed close to the railway belong to a different VLAN network, thus allowing 
to the OPP-2 node to detect from which link the packet arrive. In more details, when the packets arrive to a 
specific Typhoon i nodes, the node insert a VLAN tag with VLAN_ID=i and forward the packet toward the 
router. The OPP-2 node is therefore able to associate the MAC addresses of T1 and T2 to a specific VLAN, 
and send to this VLAN network the packets arriving from the router. 

 

Figure 3-32: deployment of OPP nodes for handover management. 
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Figure 3-33: XFSM table of the OPP-2 node. 

The details of the XFSM behaviour are depicted in Figure 3-33. The in_port=0 represents the traffic coming 
from the router, and in_port=1 represents the traffic coming from the Typhoon nodes. Setting the update_key 
as the source MAC allows learning the VLAN_ID associated to that specific source MAC. In particular, the 
XFSM stores in the R1 flow register VLAN_ID. On the other hand, the lookup_key search for the destination 
MAC and, if found, write the R1 value in the VLAN header. Otherwise, it sends the packet in broadcast to all 
Typhoon nodes in the network. 

3.6.4 Packaging for the 5G-OS 

Currently, the functions executed by the OPP engine can be stored as binary images in the 5G OS repository. 
The image can be downloaded into the OPP engine using a suitable agent that read the image and configure 
the OPP pipeline to execute the specific program. It is worth to notice that this description is platform 
dependent, i.e. if in the network there are different type of OPP engines (i.e. a software engine and a FPGA-
based one), then different binary image must be stored into the repository.  

However, CNIT is now developing the compiler for XTRAlang. The function described with XTRAlang will be 
first compiled to an intermediate target-independent representation, in form of a JSON file, to then be compiled 
with respect to a specific target (a specific HW platform). This improvement will allow to store into the 5G OS 
repository a descriptor containing the JSON file, which is target independent. In this case, the target dependent 
compilation will be performed by the agent when the JSON representation of the specific function to instantiate 
is sent to the agent. 

3.7 Technical Component 6: Solution based on IEEE 802.11 technologies, both for access and BH 
(802.11ac modems) 

3.7.1 Summary Description 

This technical component is used to provide a wireless connectivity service over a distributed area, and it is 
instantiated over prototype Wi-Fi Small Cells being developed in WP3. Hereafter, we refer to this technical 
component as SWAM: “SDN-based WiFi Small Cells with Joint Access-Backhaul and Multi-Tenant 
capabilities”. In essence the services provided by SWAM can be divided in: 

1. Service 1: Instantiate an access connectivity service composed of virtual APs over a set of physical 
Aps. 

2. Service 2: Allocate a connection through the wireless backhaul, which transport the traffic from such 
access service until a fibre attachment point. 

Figure 3-34, already included in deliverable D4.1 [3], describes an exemplary scenario where SWAM would 
be instantiated. In the figure we see a set of Wi-Fi Small Cells deployed outdoors, mounted on street furniture. 
These Small Cells offer both access, i.e. connection to the mobile devices of a specified Mobile Network 
Operator (MNO), and wireless BH, through a multi-hop mesh network that connects to various fibre attachment 
points. The technical component described in this section is a control and management system, that allows 
the 5G-PICTURE 5G OS to instantiate a connectivity service over the infrastructure described in Figure 3-34, 
whereby a given tenant specifies: i) the credentials of its access network connectivity service, ii) the Small 
Cells where it requires presence, and iii) a tunnel to its home network where traffic from that service should be 
delivered. The technical component at hand implements all the necessary plumbing to provision that service. 
In Figure 3-34 the mobile devices belonging to different MNOs are highlighted with red and blue bounding 
boxes. 
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Figure 3-34. Deployment scenario for the joint access-backhaul function. 

3.7.2 Used programmable platforms and APIs 

This technical component uses is executed over the ARM based Gateworks SBCs introduced in deliverable 
D3.1 [4]. In addition, there are two software APIs that are used to control the previous devices: 

1. A NETCONF based API, which is used by the management plane to manage the lifecycle of the virtual 
APs belonging to a specific connectivity service, i.e. deploy and delete them. This API has been 
developed as part of the work in WP3, and is described and evaluated in detail in deliverable D3.2 [5]. 

2. A second API used to deploy connections through the wireless backhaul, using OpenFlow and 
software switches. This API was developed as part of the 5G-XHaul project9, and is based on the 
Control and Orchestration Protocol (COP) [45]. 

3.7.3 Function Design/Implementation/Evaluation 

 SWAM design and implementation 

Technically, SWAM is composed of the following components: i) the physical WiFi Small Cells featuring 
multiple interfaces (wireless Network Interface Cards – NICs); ii) a software-based data-path running on each 
physical Small Cell; and iii) the SWAM controller, featuring a BH module to instantiate paths over the wireless 
BH, a provisioning module, used to manage the lifecycle of virtual Access Points (vaps), and an access bridge 
module used to connect the vaps to the connections in the wireless BH. The left part of Figure 3-35 depicts 
the various components of the SWAM architecture. 

                                                      
9 https://www.5g-xhaul-project.eu/  

https://www.5g-xhaul-project.eu/
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Figure 3-35. Design of the SWAM technical component. 

The core of SWAM is the software based datapath depicted in the right part of Figure 3-35 where we can see 
an example of a SWAM node with three physical wireless interfaces and one Ethernet interface. One wireless 
interface is used to serve access traffic and instantiates two vap interfaces for tenant A and B, whereas the 
other two wireless interfaces are used for wireless backhaul and instantiate two mesh interfaces. The Ethernet 
interface connects to the wired network and instantiates a tunnel interface. 

The goal of the SWAM datapath is to process packets coming from the tenants’ customers (vap interfaces) 
and deliver them to the appropriate SWAM gateways through the wireless backhaul (mesh interfaces). A three 
level hierarchy of software switches is used for this purpose: i) Per-tenant access bridges, ii) the integration 
bridge (br_int), and iii) the backhaul bridge (br_bh).  

The core idea behind the SWAM datapath is a logical separation between the access and the backhaul. The 
job of the wireless BH is to forward packets along a set of end-to-end tunnels, whereas the job of the access 
side is to match traffic coming from the tenants’ vaps to the appropriate BH tunnels. In SWAM, a BH tunnel is 
defined using a VLAN tag, and provides a unidirectional connection between two interfaces of a per-tenant 
access bridge. The right part of Figure 3-35 depicts a sample SWAM datapath in node s0, where tenants A 
and B have instantiated vaps, along with their corresponding access bridges (brA and brB). Tenant A has also 
instantiated presence in SWAM nodes s2 and s3. Therefore, brA has two BH facing ports, representing 
respectively tunnels sA:01 and sA:02 for tenant A which, as depicted in the right part of Figure 3-35, they 
map to VLANs 102 and 103 in the integration bridge. Notice that BH tunnels are unidirectional, hence the 
reverse tunnels for tenant A, i.e. sA:10 and sA:20 map to different VLANs (120 and 130 in the right part 
of  Figure 3-35). The interested reader is referred to [46] for a detailed description of the SWAM datapath. 

In addition to the datapath, SWAM also features a specific control plane that for each virtual wireless access 
service selects, among all devices with connectivity to the wired network, a subset that will be used to receive 
traffic from the various vaps included in this service. In addition, the SWAM datapath enables mobility, whereby 
a client device can move between virtual APs belonging to the same wireless access service, while the BH 
paths are relocated.  

As a consequence of the SWAM datapath introduced in the previous section, a given tenant enjoys a layer 
two abstraction whereby its access bridges are connected to each other forming a mesh, which may contain 
loops. Having loops is a problem because the access bridges are regular MAC learning bridges. SWAM 
contains control plane mechanisms that provide three main features: i) avoid loops in the resulting per-tenant 
overlays, ii) enable the possibility of using multiple gateways for a given tenant to balance load across the 
wireless BH, and iii) support client mobility, whereby when a client device hands over from one tenant vap to 
another the BH tunnels are re-configured appropriately. 

Loop avoidance and support for multiple gateways: To avoid loops in the resulting tenant overlay the access 
module in the SWAM controller implements a traditional Spanning Tree algorithm to each tenant overlay. To 
apply Spanning Tree one SWAM node for each tenant needs to be appointed as the root node. In SWAM the 
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tenant root node is a SWAM gateway node having a tunnel interface to the tenant home network (c.f. Figure 
3-35). Consequently, in the access bridges in the SWAM nodes for tenant t, we need to block all the ports 
p<t:ij> linking to a BH tunnel other than the tunnel to the tenant root, i.e. p<t:irt>, where rt in S is the SWAM 
node acting as root for tenant t, and S = {s0, ..., s|S|−1} is the set of all SWAM nodes. To block the ports in the 
SWAM datapath, the access module in the SWAM controller pushes a high priority drop rule into the integration 
bridge linked to the appropriate access port (c.f.Figure 3-35). Since all SWAM nodes have a direct tunnel to 
the root node, the resulting per-tenant overlay is a hub-and-spoke topology, which is loop-free. To enable load 
balancing, SWAM supports the allocation of multiple concurrent gateways for a given tenant. Multiple gateways 
are enabled simply by configuring the tenant access bridge in different non-root SWAM nodes to point to a 
different SWAM gateway using the appropriate drop rules in br_int. In this way, the resulting tenant overlay is 
partitioned in multiple sub-trees routed in the respective root nodes. In order to enable full network 
communication, the resulting overlay sub-trees are bridged in the tenant home network, using a regular bridge 
(not controlled by the SWAM controller). 

Mobility support: client device attached to a vap of a given tenant should maintain connectivity while roaming 
through the network. There are two mechanisms involved in maintaining connectivity. First, the process of 
executing a handover between vaps, which is a standard feature supported by the Wi-Fi devices used in 
SWAM. Second, a client handover triggers an update of the path followed by the packets addressed to the 
client through the wireless BH. In order to maintain connectivity upon a client handover, the MAC lists in the 
access bridge in tenant root node and in the home network bridge, need to be updated in order to point to the 
tunnel connecting to the SWAM node where the client is currently attached. Handovers in SWAM are break 
before make, since the SWAM controller has no control over the client devices in order to instruct them when 
to execute the handover. Therefore, it is critical to properly update the MAC lists in the affected bridges as 
soon as a new point of attachment (vap) for a client device is detected. There are two mechanisms in SWAM 
to accomplish this. First, the control agent in the SWAM nodes is notified by the vaps when a new client 
attaches, and generates a spoofed ARP Requests. Second, we have observed that clients upon reassociation, 
spontaneously generate a broadcast layer-two packet for link discovery purposes (LLC-xID). This packet is 
forwarded to the root node through the newly attached tunnel, hence automatically updating the MAC tables 
appropriately. 

 SWAM evaluation 

The SWAM architecture is implemented using Open vSwitch switches. Node s2 is connected to a remote 
server were the SWAM controller, which is implemented using ODL, runs. In order to validate the SWAM 
architecture, we perform a series of experiments that showcase its functionality and performance during certain 
network events and under varying network conditions. For these evaluations, we set up a physical indoor 
testbed composed of five SWAM nodes built with the components shown in Figure 3-36. Each node is 
equipped with one IEEE 802.11ac wireless NIC to provide Wi-Fi connectivity to clients, and one or two IEEE 
802.11ac NICs to establish wireless BH links. The layout of the five nodes within our office environment is 
depicted in Figure 3-36. 

 
Figure 3-36. Testbed used in the evaluation. 
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To evaluate the performance of SWAM we carry out the following experiments: i) evaluate how SWAM isolates 
access and BH, ii) evaluate how traffic is affected when we relocate a SWAM root node within a slice, and ii) 
evaluate the impact of client mobility on an ongoing session. 

Access-backhaul isolation: we show how SWAM reacts when a BH link carrying an end-to-end tunnel between 
two per-tenant access bridges breaks. To enable fast recovery, SWAM proactively installs backup paths and 
reallocates the end-to-end BH tunnel10. The left part of Figure 3-37 depicts the traffic flows transmitted in this 
experiment, before and after we break the BH link connecting nodes s1 and s3, which happens 60 seconds 
after initiating the experiment. Upon the link break, SWAM immediately reacts by reallocating STA B1 ’s traffic 
to the only possible backup path towards s4 over the upper branch, as represented with a dashed line in the 
left part of Figure 3-37. The upper subplot in the right part of Figure 3-37 depicts the individual traffic flows of 
devices A.1, B.1 and B.2 before and after the link break. The lower subplot depicts the traffic of B.1 as 
measured in the s3 and s2 nodes, before and after the link break, demonstrating how SWAM is able to switch 
to a backup path in a seamless manner. 
Gateway relocation: In the previous experiment, we can see that after the link breaks the overall network 
throughput reduces in about 10 Mb/s (from 83 Mb/s to 73 Mb/s). This can be addressed by the SWAM controller 
by relocating the ROOT node of Tenant B, given that Tenant B has two SWAM nodes that include tunnels to 
its home network, namely s4 and s0. In particular, by relocating the ROOT node for Tenant B in s1 to s0, the 
traffic of client B.1 will follow the path described in the left part of Figure 3-38, alleviating the link between s1 
and s2, which carries traffic from client A.1. 

 
Figure 3-37. SWAM evaluation of access-backhaul isolation. 

 
Figure 3-38. SWAM Gateway relocation evaluation. 

                                                      
10 https://www.5g-picture-project.eu/download/swam.pdf  

https://www.5g-picture-project.eu/download/swam.pdf
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To evaluate the impact of relocating a gateway on network performance, we perform two experiments. First, 
in order to measure the time the network is in outage, we send a continuous stream of ICMP messages every 
5 ms using the ping tool and measure the RTT. Second, we study how a gateway reallocation affects an 
ongoing TCP stream. The upper plot in the right part of Figure 3-38 depicts the result from one of the ICMP 
experiments. At the beginning, when the gateway for STAB1 is s4, the average RTT fluctuates around 4 ms, 
as the end-to-end flow traverses two hops in the wireless BH (s1-s2-s4). After the gateway relocation, STA 
B1 ’s flow crosses only one BH link (s1-s0) before reaching the tunnel interface to tenant B’s home network, 
and the resulting RTT decreases to 2 ms. However, the gateway relocation process is not immediate, as the 
rule update and ARP spoofing performed by the SWAM controller require a certain amount of time for 
processing and packet transmissions. The whole relocation takes an average of 201.72 ms, the time measured 
between the moment in which the last valid ICMP packet reaches the tenant’s home network via gateway node 
s4 and the time when the first valid ICMP packet reaches the tenant’s home network through gateway node 
s0. The lower plot in the right part of Figure 3-38 shows the empirical CDF of the connection outage times 
resulting from the relocation process measured in all the experiments. Note that the relocation time depends 
on the performance and the delay of the control path between the nodes and controller. In our second 
experiment, an iperf with TCP traffic is launched towards tenant B home network, in order to determine the 
impact of the reallocation process on the end-to-end throughput of STA B1. The left part of Figure 3-39 depicts 
the evolution of STA B1’s throughput during the course of two of these experiments. At the beginning of the 
experiment, a throughput of around 30 to 50 Mb/s can be observed. The fluctuations are a result of varying 
channel conditions and of TCP’s congestion window that causes a non-steady data rate. At the 60 seconds 
mark, when the gateway reallocation occurs, the end-to-end flow is interrupted for a brief time, causing a drop 
in the throughput. The left part of Figure 3-39 captures two different cases that are representative of how the 
throughput evolves after the gateway reallocation process. In the first case (continuous line), TCP performs a 
fast recovery, quickly reaching similar throughput values as before the reallocation process. In the second 
case (dashed line), TCP performs a slow start procedure, effectively extending the time it takes for the client 
to reach the initial throughput levels. We conclude that, in both cases, ongoing flows using TCP recover from 
a gateway relocation in a reasonable time. Since relocation is not a common event, we prove that this is an 
effective mechanism to enable load-balancing while minimising impact on ongoing traffic. 

Mobility: In order to determine how fast SWAM can react to a client that switches from one vap to another, two 
different events are analyzed: i) STA A1 moves from the vap on node s1 to the vap on node s2, and ii) STA 
B1 moves from the vap on node s1 to the vap on node s3. In order to analyze the two mobility experiments, a 
reachability test is performed. It consists in performing the handover process for each client separately, while 
they are pinging their home network every 1 ms. The overall time it takes to switch an vap is composed of two 
intervals: i) the client handover time, and ii) the time for SWAM to redirect traffic to the BH tunnel connecting 
to the target vap. The client handover time does not depend on SWAM and it is therefore not evaluated. 
Instead, we focus our evaluation on the time required by SWAM to update the BH tunnels. 

The right part of Figure 3-39 shows the CDFs of the overall reallocation time measured for STAA1 and STAB1 
across all experiment repetitions. The reallocation process proves to be fast, in average taking less than 30 
ms and at most 50 ms, independent of the client. In average, STAA1 is reallocated slightly faster than STA B1, 
as it is only required to update the access bridge in the root node, and not in the tenant’s home network. 
Overall, it can be stated that the reallocation times for both clients represent only a fraction of the handover 
time. This demonstrates that SWAM is a very agile architecture, capable of quickly adapting its network 
configuration when dealing with client mobility. 

 
Figure 3-39. SWAM Mobility evaluation. 



 

5G-PICTURE Deliverable  

 

H2020-ICT-2016-2017-762057 Page 73 of 104 30. Nov. 2018 

 

3.7.4 Packaging for the 5G OS 

To understand how this function will interact with the 5G OS, we need to distinguish between the control 
function used to support service deployment, which was described in the previous section, and the service 
description itself. Thus, the Wi-Fi controller used to manage the Wi-Fi Small Cells is a control plane function 
that is part of the 5G OS itself, i.e. it is a Domain Controller using the 5G OS terminology. Instead, the access 
connectivity service, is a service described using a 5G OS service descriptor, which will be on-boarded into 
the 5G OS repository. 

We sketch next how the service descriptor provided by this technical component would look like. A detailed 
definition of this service descriptor though, is within the scope of WP5. 

SWAM-service descriptor: 

- Wireless Controller IP address // reachability information for the corresponding control function 

- List of physical Wi-Fi APs where connectivity is requested 

- Quota associated to the service // % of airtime 

- Service template: 

o SSID 

o Security credentials 

- List of physical Wi-Fi APs with wired network connection where a tunnel to the tenant’s home network 

should be instantiated 

- Home network tunnel template: 

o Type: Transport VLAN, GRETAP 

o For Transport VLAN: value 

o For GRETAP: remote end point IP address 

The 5G OS would retrieve this service descriptor from the repository, complete it with the data corresponding 
to a particular service instantiation, and submit it to the control plane function, which would then communicate 
with the physical network devices. 
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4 PNFs and VNFs to support synchronisation services in 

converged FH/BH networks 

4.1 Introduction 

5G-PICTURE deliverable D4.1 [3] defines an architecture for synchronisation as a service in the context of 
heterogeneous networks. The vision is that multiple technology domains are going to feature on-path support 
for frequency and time distribution on a subset of their nodes. However, each domain will do so in accordance 
to its own physical and protocol limitations. The network, in turn, will track these individual capabilities and 
ensure that, in the end, timing distribution services can be successfully provided from time servers to end 
applications while meeting the tenant’s service level requirements. 

A dedicated control plane is envisioned for such a coordination of synchronisation functions. In essence, this 
control plane needs to acquire node information, configure the nodes in the network and gather real-time 
performance metrics. These are the functionalities that in deliverable D4.1 [3] were deemed as essential for a 
“synchronisation harmoniser” to be able to optimize and maintain the timing services requested by end 
applications. The acquisition of information, in particular, is expected to be provided by control functions 
embedded close-to or inside the timing-aware nodes pertaining to each technology domain. These functions 
will communicate to the harmoniser and, ultimately, allow it to acquire a global view of the timing network. 
Some of these control capabilities are further discussed in 5G-PICTURE deliverable D3.2 [5]. 

In addition to control plane aspects for synchronisation as a service, deliverable D4.1 [3] also covered 
synchronisation functions in key 5G-PICTURE technologies. More specifically, IEEE 802.11ad millimetre-wave 
(mmWave) mesh and IEEE 802.11 Sub-6 GHz networks, which are intended to support the IEEE 1588 
Precision Time Protocol (PTP) [47]. Additionally, it considered over-the-air time synchronisation between 
timing division duplexing (TDD) remote radio units by relying on dedicated signalling between them and 
synchronisation over Flex-Ethernet (Flex-E). The timing support provided by these technologies is meant to 
support time-synchronised transmissions in the mobile radio access network (RAN), such as the ones for 
coordinated multipoint (CoMP) transmissions or TDD uplink-downlink interference coordination. For IEEE 
802.11 in Sub-6 GHz, exceptionally, the work considers the usage of network-distributed timing references in 
the IEEE 802.11 transport domain itself, rather than the RAN. In this case, the goal is to enable time-oriented 
resource allocation for multi-tenancy in the transport network. 

The present work describes the advances along the lines of work introduced in deliverable D4.1 section 5, that 
is, on synchronisation control and harmonisation capabilities, as well as timing support for 5G-PICTURE 
transport technologies. The organisation of the text is as follows: Section 4.2 comprehensively describes the 
adopted testbeds, with details regarding architecture, software, hardware resources and implementation. 
Section 4.3 then analyses concepts and results focused by each testbed, with independent subsections 
dedicated to each of the technical components from deliverable D4.1. 

4.2 Technical Component 1: IEEE 1588 over IEEE 802.11ad 

4.2.1 Summary Description 

The main functionality offering is related to the detection and transportation of 1588 frames over mmWave 
devices with minimal delay, supporting timestamping. 

4.2.2 Used programmable platforms and APIs  

 Overview 

The work presented in section 5.3.1 of deliverable D4.1 [3] introduces MAC-level strategies for the transport 
of IEEE 1588 over IEEE 802.11ad. More specifically, it discusses an approach for identification of IEEE 1588 
content in IEEE 802.11 frames such that the receiver knows when to timestamp the arrival of a PTP message 
without inspection of the 802.11 frame payload. Additionally, it analyses transmission settings that can be 
adopted to improve synchronisation performance, such as prioritisation in terms of quality-of-service (QoS), 
the strategy in terms of packet aggregation and acknowledgement policies. These are further analysed in this 
work based on experimental results.  

As a reference for subsequent sections, Figure 4-1 illustrates a layer model of PTP operation in the network, 
particularly considering IEEE 802.11ad network interfaces. The architecture assumes that the IEEE 1588 PTP 
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implementation stack runs in the application layer, in the user space of an OS. This is the piece of software 
that effectively implements the PTP protocol, namely its data sets, state machines, algorithms and messages. 
The PTP messages generated by such an application traverse the OS network stack until they reach the 
network device driver that is responsible for pushing data for transmission by the appropriate network adapter. 
While crossing the network stack, these messages may either be encapsulated within UDP, IP and Ethernet, 
in case of UDP transport, or be framed directly in raw Ethernet frames. In any case, Ethernet frames are 
processed by the driver and then transferred to the network adapter. The MAC layer of the adapter, in turn, 
defines how these frames are sent over the link, that is, sets configurations that are supportive for timing 
transport. Finally, the PTP messages, now within the payload of MAC frames, are passed to the PHY for 
transmission in the wireless channel.  

Once a transmission is deemed as complete, the departure timestamp taken at the PHY is sent up to the 
application through the same layers that it crossed originally. Completion, in this case, can either be right after 
the end of transmit frame or solely after an acknowledgement comes back from the recipient, in case 
acknowledgement is used. After that, the network card passes the timestamp to its driver, which passes it to 
the network stack such that the latter can deliver the timestamp to the application. Meanwhile, at the receiver, 
the incoming IEEE 802.11 frames are continuously parsed based on their headers and by doing so the receiver 
can identify when a frame has PTP content. Once found, the receiver takes an arrival timestamp and passes 
it to the driver along with the data. The driver, once again, delivers the timestamp to the network stack and the 
latter pushes the timestamp to the socket that is bound to the PTP application. 

The testbed that is described in the sequel relies on an implementation following the architecture of Figure 4-1. 
The specific components implementing each layer are clarified in the sequel. 

 

Figure 4-1. Layer model for IEEE 1588 operation over IEEE 802.11ad with summary of corresponding 
investigations. 

 Related technical components 

The investigation on IEEE 1588 transport over IEEE 802.11ad consists in one of the components in deliverable 
D4.1 that addresses novel technologies for PTP transport. Given the context of synchronisation distribution 
over heterogeneous networks, this component represents one among multiple technology domains in the 
network and, hence, needs to be coordinated. Hence, this component relates to the Synchronisation 
Harmonizer component of deliverable D4.1 [3]. Besides, it also relates to synchronisation programmability 
interfaces described in deliverable D3.2 [5]. 

 Resources: hardware and software components 

The testbed covered in this section relies on the Blu Wireless Technology (BWT) Typhoon platform, which 
comprises two mmWave IEEE 802.11ad wireless modems connected via PCIe to a network processor unit 
(NPU), hereafter referred simply as the “host”. The platform is based on the RWM6050 chip from IDT Systems 
Inc., which includes patented silicon IP from BWT, referred as the “BH2”. The latter implements two 
independent IEEE 802.11ad modems, named “Hydra 0” and “Hydra 1”, with independent MAC and PHYs. 
These modems implement up to baseband processing, while relying on an external RF frontend, to (from) 
which the baseband signals are fed (received). 
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Figure 4-2: Blu Wireless Typhoon platform overview. 

The diagram in Figure 4-2 summarises the high-level architecture of the Typhoon platform. Note that, in 
addition to the RWM6050 (with the BH2 IP), the host is also attached to a PTP-capable Ethernet interface. 
This allows interfacing to Ethernet-based PTP clocks in the network. The reader is referred to deliverable D3.1 
[4] for further details on the Typhoon HW.  

The BH2 PHY hardware is capable of taking nanosecond-accurate timestamps of incoming and egressing 
packets. In terms of the model in Figure 4-1, the Hydra modem of the BH2 (and hence the RWM6050) 
represents the bottom layer, i.e. the IEEE 802.11ad MAC and PHY. This layer communicates to the BH2 
device driver, which runs in kernel space at a Linux host. Both the MAC and the BH2 driver provide special 
support for the transport of hardware-based packet timestamps. The driver delivers the timestamps into the 
Linux network stack when applicable and the latter, then, carries the timestamps up to the application. 

Regarding software resources, two different PTP applications are adopted for the experiments. The first is the 
ptp4l open-source implementation of the linuxptp framework, which can operate as either PTP master or slave, 
that is, features PTP ordinary clock functionality [47]. This application can also operate in PTP boundary clock 
(BC) mode, where one network interface (PTP port) behaves as slave to an upstream node and the other 
interfaces behave as PTP slave to downstream nodes. Meanwhile, specifically for tests in PTP transparent 
clock (TC) mode, a self-developed TC application is exploited. 

In the TC case, the layer model can be better represented by the diagram in Figure 4-3, which illustrates a 
transmission from PTP master to slave through a TC. In this scenario, the PTP master can be thought as a 
Typhoon, the TC as another and the slave as yet another Typhoon. In the master and in the slave, a single 
Hydra of the BH2 is used, whereas in the TC both Hydras are used as two independent PTP ports. 

When the master application illustrated in Figure 4-3 transmits a PTP message, this message first arrives at 
the TC Typhoon via one of its IEEE 802.11ad modems (say Hydra 0) and is timestamped upon arrival. The 
TC application then forwards the message to the slave via the other IEEE 802.11ad modem (i.e. Hydra 1). The 
departure time towards the slave is made available to the TC application as the egress timestamp, and the 
application then works out the message’s residence time (inside the TC) in order to perform its intended TC 
support. A similar layering model applies in the BC use case. 

 

Figure 4-3: Transparent clock layer model. 
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In addition to ptp4l and the self-developed TC application, the phc2sys application from the linuxptp framework 
is used. The latter is capable of synchronising time counters corresponding to independent PTP-aware network 
interfaces attached to a Linux host, that is, the so-called PTP HW clocks (PHCs). In our case, it is used to 
synchronise kernel space time counters corresponding to the independent Hydra modems and the PTP-aware 
Ethernet card in the host. This usage is further detailed later. Moreover, the iperf3 application is also adopted 
along the tests for generation of background (BG) UDP traffic, where BG in this case implies traffic other than 
PTP. 

Lastly, standalone PTP grandmaster and slave clocks are used for some of the experiments. The specific 
grandmaster clock is the Meinberg M600, a device containing a high stability (oven controlled) crystal oscillator 
that interfaces to time sources such as GPS and IRIG. This device is used as the PTP master clock that is on 
top of the clock distribution hierarchy, namely the PTP grandmaster. Meanwhile, the standalone PTP slave 
that is adopted is the Meinberg SyncBox/PTPv2. Both the Meinberg M600 and the SyncBox provide pulse-
per-second (PPS) outputs that can be used to evaluate the synchronisation accuracy. Table 4-1 summarises 
these and all aforementioned testbed resources. 

 Testbed Architecture 

Several distinct topologies are explored and clarified along this section. The first is the one illustrated in Figure 
4-4. The setup consists of two Typhoons, namely two hosts, each attached to its own BH2. The BH2s, in turn, 
are connected directly to each other by coaxial cables that transport baseband signals. That is, this setup does 
not involve up and down-conversion to (from) 60 GHz and neither does it include RF interfaces or wireless 
transmissions. It is used with the goal of running isolated tests that exclude effects from the RF frontend and 
the wireless channel. 

The second topology is illustrated in Figure 4-5. Unlike the previous topology, this setup effectively employs 
RF interfaces and wireless transmissions in 60 GHz. These are particularly carried inside an anechoic 
chamber. Moreover, this setup consists in a point-to-multipoint topology. At host 1, a single Hydra of the 
Typhoon is used. Meanwhile, at the second host, both Hydras are used and connected to independent RF 
interfaces. Their transmissions to the station (STA) in host 1 are, therefore, time shared and the two stations 
in host 2 are spatially adjacent to each other. 

Table 4-1: Summary of resources used for the IEEE 1588 over IEEE 802.11ad test setup. 

Resource Type Role 

BWT Typhoon Hardware Transport node with PTP-aware IEEE 802.11ad and Ethernet interfaces 

BWT TC Software BWT-developed TC application 

ptp4l Software Open-source PTP application 

phc2sys Software Application that synchronises independent Linux PHCs 

iperf3 Software Application used to generate BG traffic 

Meinberg M600 Hardware Standalone time server used as PTP grandmaster and connected via 
Ethernet 

Meinberg 
SyncBox/PTPv2 Hardware Standalone PTP slave Ethernet-based device 

 

Figure 4-4. Cabled setup with direct baseband link between PTP master and slave hosts. 
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Figure 4-5. Point-to-multipoint wireless test setup. 

 

Figure 4-6. Transparent clock test setup using BH2s connected directly via coaxial cables. 

Next, the setup used for TC tests is illustrated in Figure 4-6. It is again composed by two hosts, each with its 
own Typhoon. Host 1 launches two independent ptp4l instances, one as PTP master and the other as PTP 
slave, respectively bound to network interfaces corresponding to Hydra 0 and Hydra 1. In contrast, Host 2 
launches the TC application and uses its two modems as the two independent ports of the TC. The 
communicating Hydras are connected directly to each other via coaxial cables. 

Lastly, the setup that relies on standalone PTP clocks is illustrated in Figure 4-7. At first, a baseline 
performance is obtained by connecting the PTP grandmaster (Meinberg M600) directly to the Meinberg 
Syncbox/PTPv2 slave via ordinary 1000BASE-T Ethernet. The PPS output of the slave is plugged into an 
oscilloscope together with the PPS output of the M600. Then, the offset between the rising edges of these 
PPS signals is used to evaluate the time synchronisation performance.  

With the baseline performance, the second step is to introduce two Typhoons operating as Transparent Clocks 
(TCs) in the path from master to slave, as illustrated in the bottom part of Figure 4-7. In this case, the messages 
traverse the Typhoons from Ethernet to mmWave and vice-versa. That is, a PTP message transmitted by the 
M600 grandmaster first arrives at Typhoon 1 through its PTP-capable Ethernet interface and, then, is 
forwarded to the next Typhoon via the mmWave interface. Similarly, at Typhoon 2, the incoming PTP message 
arrives via the mmWave interface and subsequently is forwarded by the TC application towards the Meinberg 
Syncbox/PTPv2 via the Ethernet interface. In the end, the time accuracy impact of these TCs is assessed by 
using the PPS signals from the standalone master and slave equipment, again by assessing their alignment 
and comparing to the baseline. 

 

Figure 4-7. Setup for synchronisation performance measurements using standalone master and 
slave devices communicating through Typhoons in TC mode. 
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 Configuration and Implementation details 

In all tests with ptp4l, the PTP master clock is configured to send 128 Sync messages per second and 8 
Announce messages per second, while the slave is configured to send 16 Delay_Req messages per second. 
Other than this, default ptp4l configurations are used, including the delay mechanism that is set to end-to-end 
(as opposed to peer-to-peer) [47]. Meanwhile, when using the M600 as master, i.e. in the setup of Figure 4-7, 
the master differs in the Sync rate only, which is configured to 16 packets per second. 

PTP messages are encapsulated in both raw Ethernet frames and UDP datagrams along the experiments, 
depending on the test scenario. These will be clarified before the presentation of each experiment. 
Furthermore, background UDP traffic with gigabit bandwidth utilisation is streamed between the STAs during 
tests using the iperf3 application. In some tests, the maximum bandwidth allowed for this traffic is controlled 
and varied over time in order to assess the BG traffic impact on synchronisation.  

With regard to IEEE 802.11ad specifics, it should be noted that contention-based channel access periods 
(CBAPs [48]) are adopted for all data transmissions. These are guarded by request-to-send (RTS) and clear-
to-send (CTS) signalling exchanged between the STAs. That is, even though CBAP slots are used, an STA 
checks whether it can send or not to another STA before doing so by using the RTS/CTS exchange. Moreover, 
the link adopts auto-adapted modulation and coding scheme (MCS), which tunes to the appropriate choice at 
any given moment 

A further important aspect along the tests is synchronisation of the time counters from independent network 
interfaces attached to the same host. This is necessary for TC (or BC) tests, specifically when relying on PTP 
ports on independent network devices. For example, the case of a TC with one port bound to an Ethernet card 
and the other port bound to the IEEE 802.11ad card, as in Figure 4-7. The motivation, in the BC case, is that 
synchronisation of the slave port (following an upstream master) must lead to synchronisation of the master 
ports, so that they can deliver the synchronised time downstream. This only holds if an external entity (or the 
PTP application itself) can synchronise the time scales of the independent ports. In the TC case, in turn, the 
motivation is that comparison of ingress and egress times taken at independent interfaces (refer to Figure 4-3) 
is reasonable only if the time scales of the involved interfaces are aligned. Any offset between them will lead 
to error parcels on the TC residence time computations. 

Under the Linux architecture, this scenario arises when a BC or TC application relies on independent PTP 
Hardware Clocks (PHCs), where a PHC consists in an independent time count kept by the driver of a network 
interface. A PHC time count can either be following the time used by the timestamping unit (TSU) of the network 
device or it can be exactly equal to the TSU time. Correspondingly, interaction to the PHC of an interface can 
either lead to interaction to a data structure kept at the driver (one following HW time) or produce direct 
read/write transactions to the TSU of the device. The phc2sys application can be used in both cases. It 
synchronises multiple PHCs by taking one as the time master and other PHCs as slaves. The usage in our 
case is illustrated in Figure 4-8, where the PHC that assumes master role varies per setup. 

In the test setup of Figure 4-6, the phc2sys application is used solely during initialisation of host 2 (the TC) and 
is not used at host 1. The rationale is that the time counts corresponding to the Hydras of the same BH2 are 
naturally syntonized, as they follow the same oscillator in hardware. Thus, the corresponding PHC time scales 
of the Hydras only differ by an initial offset that arises due to different times of driver loading, when the PHC 
time is reset. This initial error can be roughly corrected by phc2sys and, then, phc2sys can be turned off. 
Thereafter, the independent Hydra time counts are expected to remain aligned. 

 

Figure 4-8: phc2sys usage for synchronisation between independent Linux time counters. 
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The same behaviour does not hold in the setup of Figure 4-7. Since the TC in this case operates from Ethernet 
to mmWave and vice-versa, it is now the Ethernet and BH2 time counts that need to be aligned. These are not 
syntonized, as they rely on different oscillators (on different boards). As a result, correction of time offset at a 
given moment does not imply that the time scales will remain aligned. Therefore, in this case, the phc2sys 
application needs to remain active during the entire operation of the TC, in which it continuously synchronises 
the Ethernet and BH2 timescales.  

The problem with continuous operation of phc2sys is the performance loss, which arises due to the fact that 
phc2sys relies on software to synchronise hardware clocks. That is, it has to read the time at the master PHC 
and then apply it to the slave PHC in another (write) operation. Since these read and write operations are not 
atomic and there is jitter in both reading and writing, they introduce significant errors. This is acceptable when 
phc2sys is executed solely during initialisation, as the residual error left after phc2sys is stopped remains 
during the entire operation of the device, provided that the PHCs are syntonized. However, when operating 
continuously (when PHCs are not syntonized), the error is continuously changing and so is the error of a PTP 
slave downstream. The solution involves relying on hardware-based synchronisation of independent devices, 
which is typically implemented by connecting PPS signals between them. However, this infrastructure is out of 
scope and, instead, the degradation is accepted for the experiments that are presented in the following 
subsection. 

4.2.3 Function Design/Implementation/Evaluation 

 Configuration/Simulation/Proof of concept details 

This section presents experiments carried out with the testbed described in the previous section. The 
experiments aim at advancing discussions and propositions posed in Section 5.3.1 of deliverable D4.1. These 
are summarised in the layer model of Figure 4-1 and revisited in the sequel. 

The first discussion is with regard to the IEEE 1588 identification strategy. That is, the approach of sending 
PTP messages within ordinary IEEE 802.11 data frames with a PTP-marking group receiver address (RA). 
One point of discussion concerns unicast PTP messages. More specifically, whether the approach is valid to 
ensure that a single destination receives a message whose RA is a group address, potentially matched by 
nearby stations. The motivation for believing it is safe to adopt a group address is that mmWave transmissions 
are highly directional and ultimately directed from point to point. Furthermore, specific stations are scheduled 
to a given access time slot (even in CBAP) and the transmissions are guarded by RTS/CTS exchange. In the 
end, this leads to being very unlikely that a PTP transmission to one station would leak to another. This is 
verified next by using the point-to-multipoint arrangement of Figure 4-5. 

A second discussion refers to the acknowledgement policy. There is one potential motivation for using NoAck 
policy when transmitting 802.11 frames carrying PTP event (timestamped) messages, as discussed in 
deliverable D4.1. It comes from the choice of IEEE 1588 identification using a magic group address RA. 
Because this address is a group address, if acknowledgement is enabled, multiple stations could potentially 
acknowledge the same message. Nevertheless, it was argued just above that this is not expected, since 
transmissions are highly directional, so this motivation can be neglected.  

Instead, the main motivation for transmissions using NoAck policy comes from current BH2 software 
constraints, regarding how group addresses messages can trigger the transmission of acknowledgement, 
which is out of scope. For the BH2, PTP event-bearing frames are indeed preferably transmitted using NoAck 
policy. The impact of using NoAck versus using acknowledgement is evaluated in the sequel to understand 
whether there is any drawback of not relying on acknowledgements for PTP frames. 

An expected drawback of using NoAck policy is that it leads to higher probability of losing PTP messages in 
the link, due to absence of retransmissions. For that, we leverage on the robustness of PTP instead, since a 
PTP slave can recover from sporadic message losses. However, to reduce the probability of message loss, 
the PTP event-bearing frames are sent using MCS 1 [48], that is, with maximum reliability. This is suitable 
since PTP event messages are 44 bytes long and sent at a low rate (kbps), such that they do not impose a 
significant drawback in terms of air time and link utilisation.  

One noteworthy perspective is that the approach of using NoAck policy inherently achieves a low-level PTP 
earliest arrival packet filter [49]. That is, it uses solely the PTP message exchanges corresponding to 
transmissions that are successful in the first transmission attempt, with no need for re-transmissions. This 
implies PTP delay-request response exchanges [47] whose overall duration are shorter. On the other hand, 
packet loss can lead to long intervals between slave servo updates and potentially loss of messages that 
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maintain the best master clock algorithm (BMCA). The trade-offs between the two approaches are not obvious 
and will be observed in the experimental section.  

 

Figure 4-9: Timestamping of PTP event MPDU/MSDU on aggregated 802.11 frames. 

A last aspect of using the group RA strategy for PTP event identification refers to aggregation. If the PTP 
message was aggregated to other packets in an aggregated MAC service data unit (A-MSDU) and (or) 
aggregated MAC protocol data unit (A-MPDU) [48], the offset of the PTP MSDU and the corresponding MPDU 
with respect to the frame start would not be a problem as far as PTP operation is concerned. This is because 
the goal in PTP is to have timestamps taken at two clocks in the network between which there is a constant 
and traceable delay, to allow clock comparisons. Packets are timestamped at the PHY layer just as an artifact 
for achieving timestamps at both sides of a link with a reliable delay in between. Hence, it makes no appreciable 
difference if the A-MPDU start is timestamped rather than the precise moment that the PTP MSDU goes on 
air. 

The problem with aggregation is not the offset of the PTP message in the A-MPDU, since the offset is the 
same on departure and arrival, as illustrated in Figure 4-9. Instead, it is the fact that an A-MPDU has a single 
RA in its header, so that once the PTP-marking RA is set it cannot by itself indicate which MSDU in the frame 
consists in the PTP event message. Hence, the receiver cannot know which MSDU should be associated to 
the arrival timestamp when sending the timestamp (and the packet data) up to the driver. The adopted 
approach, then, is to disable aggregation on frames carrying PTP event messages, namely to send then 
isolated on non-aggregated MSDU/MPDUs. 

Finally, the experiments presented in the sequel also evaluate the effects of applying QoS prioritisation to PTP 
messages. The IEEE 802.11ad link established by the BH2 is configured to send PTP packets with maximum 
QoS priority. This ensures lower latencies over the IEEE 802.11ad link alone. To complement this, when using 
UDP transport, prioritisation is also assigned at the OS network stack by using the type-of-service (ToS) field 
of the IP packet. The latter reduces the latency that the packet is subject to when crossing the network stack 
from the application to the device driver. The Linux commands for assigning ToS priority are presented below 
in Listing 1. Note both UDP ports used by PTP are prioritised. 

Listing 1 

 

sudo iptables -A PREROUTING -t mangle -p udp --dport 319 -j TOS --set-tos Minimize-Delay 

sudo iptables -A PREROUTING -t mangle -p udp --dport 320 -j TOS --set-tos Minimize-Delay 

sudo iptables -A OUTPUT -t mangle -p udp --dport 319 -j TOS --set-tos Minimize-Delay 

sudo iptables -A OUTPUT -t mangle -p udp --dport 320 -j TOS --set-tos Minimize-Delay 

 Results Relation to KPIs 

Deliverable D4.1 [3] discusses two categories of timing characterisation and KPIs, ones focused on radio 
access performance and ones focused at the timing transport alone. Here, we focus on timing transport metrics 
directly. The main adopted KPI is the slave “offset from master” [47], namely the time offset between the PTP 
slave and the PTP master. This time offset is observed with two main expectations: that its maximum value 
over long observation intervals is small enough and that it does not fluctuate rapidly. Hence, the two main 
parameters observed next are the maximum time offset and the root-mean-square (RMS) time offset. The 
maximum absolute time offset is interchangeably named max|TE| in the sequel.  
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It should be noted that two types of time offset measurements are used in the experiments. When relying on 
ptp4l, the time offset measurements are solely based on estimations taken at the slave application (at SW 
level). As discussed in the context of Figure 4-8, the offset seen by the application does not translate directly 
into the offset between the HW (TSU) time counts. This is because there is an abstracted time count in the 
driver (the PHC), which follows the TSU time, but is not equal to TSU time and also can be synchronised 
independently, while the TSU time remains free-running. This means this evaluation cannot be deemed as the 
HW synchronisation accuracy, but solely as a good indication of it. Meanwhile, the second measurement 
approach is the one based on PPS signals, specifically used in the setup of Figure 4-7. This, in contrast, is 
based on hardware time counts, so it reflects the HW accuracy directly. 

An additional relevant KPI refers to the latency that PTP messages are subject to from transmission by the 
application to effective departure from the network adapter. This latency is particularly measured by the 
timestamp fetching latency, which consists in the interval from the time the timestamped messages is pushed 
by the application for transmission to the time the departure timestamp arrives back at the application. This 
interval is illustrated in Figure 4-10. Note that it involves crossing all layers from application to transmission 
and backwards, the latter in the departure timestamp’s way back to the application. On the timestamp’s way 
up, the MAC first delivers it to the driver while acknowledging the transmission was complete. The driver then 
sends an acknowledgement to the network stack indicating the transmission was complete and sends the 
timestamp along. Ultimately, the network stack delivers to the application. We evaluate this complete latency 
under the presence and absence of PTP prioritisation. 

In practice, there are many implications imposed by latency on PTP. One problem is that slave clocks rely on 
timeouts for reception of Announce messages in order to keep their state machine in the so-called “slave” state 
[3]. An excessive latency realisation at some point could disturb this and other state machines. Another 
problem is that latency causes time offset estimations to be outdated by the time they are applied as 
corrections. This is especially accentuated in two-step PTP mode [47], since the departure timestamp needs 
to be fetched before a follow-up message can be sent. This means the complete Sync and delay request-
response exchange can be prone to significant latencies, such that the time offset computation would be 
outdated. This is loosely observed by assessing whether the time offset performance improves when using 
prioritisation. 

A last metric of concern is the PTP event loss rate. When PTP event messages are transported using NoAck 
policy, eventual losses are expected. These can impact the slave’s synchronisation performance, since a loss 
event leads to longer intervals without clock correction. Hence, it is also observed next. 

 Experimentation/Evaluation results 

The first experiment contrasts the approach using normal acknowledgement (Ack) for the PTP event-bearing 
frames to the strategy in which these frames are sent with NoAck policy. The experiment is carried on the 
point-to-multipoint wireless setup of Figure 4-5, where Host 1 hosts the PBSS control point (PCP) and Host 2 
hosts two non-PCP STAs. Bidirectional UDP BG traffic runs between PCP and STA 1, as well as PCP and 
STA 2. At the same time, a unicast PTP stream is set between the PCP (PTP master) and STA 1 (PTP slave), 
particularly using layer-2 (i.e. raw Ethernet) transport. The slave was captured during roughly one hour, over 
which the maximum throughput allowed for the background traffic was gradually increased from 100 Mbps to 
1000 Mb/s each way. 

 

Figure 4-10: Timestamp fetching latency. 
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Figure 4-11: Maximum time offset under No Ack policy and with normal Ack. 

The moving max|TE| estimation at the slave is shown in Figure 4-11. Note that both approaches present similar 
performance during the initial part of the experiment, while the BG traffic throughput is still relatively low. In 
particular, the max|TE| remains below roughly 55 ns with both approaches. However, as the BG throughput 
cap becomes higher, the PTP stream sent under NoAck policy starts to suffer from more frequent packet 
losses due to contention in the access. Furthermore, as the iperf throughput cap increases, this application 
fills the network stack buffer faster relative to the rate that the IEEE 802.11ad link can transmit and, as a result, 
PTP messages are not able to enter the buffer in a timely manner. This sporadically causes long delays to 
PTP messages and eventually leads to the loss of locked state at the slave, which impacts its synchronisation 
performance. Hence, performance degradation comes as a result of not throttling BG traffic fairly and also, 
under No Ack policy, due to PTP event losses. 

In quantitative terms, both approaches on average presented a RMS time offset of approximately 12.6 ns. 
However, during the entire experiment, the max|TE| achieved with Ack enabled was 57 ns and under NoAck 
some error peaks were observed such that its max|TE| was 79 ns. In conclusion, the approach adopting normal 
acknowledgement showed superior and especially more reliable performance.  

Next, we investigate the impact of prioritisation of PTP messages using the point-to-point cabled setup from 
Figure 4-4. Again, bidirectional BG traffic runs between the two hosts and its throughput cap is gradually 
increased, now from 1000 Mb/s up to 2000 Mb/s each way. This time, however, PTP is transported over 
UDP/IPv4 and, at the network stack, the PTP-bearing IP packets are assigned low-latency ToS, using the 
approach presented in Listing 1. At the IEEE 802.11ad link, in turn, the PTP-bearing frames are assigned the 
highest-priority QoS level. Meanwhile, NoAck policy is adopted along the experiment, since, as mentioned in 
Section 4.2.3.1, this is currently the preferable choice for the BH2. 

The moving maximum time offset at the slave is presented in Figure 4-12. Due to the stability of the oscillators 
and the operation of the servo, the benefit of using prioritisation (QoS and ToS) was subtle. The histogram of 
the moving RMS slave time offset in Figure 4-13 reveals the slight difference, as the distribution with disabled 
prioritisation is less concentrated around the average. In particular, the distribution obtained with QoS and ToS 
enabled shows an RMS time offset varying over time with an SDEV of 1.017 ns, in contrast to 1.054 ns with 
prioritisation disabled. Also, the RMS offset was on average 14.87 ns with prioritisation and 15.05 ns without 
it. Importantly, note that during the hour-long experiment, the maximum time offset remained below 53 ns with 
prioritisation and 58 ns in the other case, which loosely suggests the ability to meet telecom-grade max|TE| 
targets that were summarised in deliverable D4.1 [3].  
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Figure 4-12: Maximum time offset with and without ToS and QoS prioritisation on cabled point-to-
point setup. 

 

Figure 4-13: Histogram of the slave RMS time offset with and without prioritisation. 

It is also worth to point out the reason why the average RMS offset is higher in this test (14.87 ns) when 
compared to the previous wireless setup (12.6 ns). It is not because of the physical medium (whether wireless 
or cabled). Instead, it is due to the adopted PTP transport layer. The present test adopts UDP transport, which 
takes longer to be processed. The extra latency leads to slightly inferior performance.  

A subsequent experiment is set to exercise the performance of the platform as an IEEE 802.11ad TC. The 
experiment was carried on the cabled setup from Figure 4-6 and captured in the course of 24 hours. The 
resulting RMS and maximum time offset measurements are shown in Figure 4-14. Note that, throughout the 
experiment, the maximum time offset seen by the PTP slave was of 88 ns. While noting this includes both TC 
and slave error contributions, this, again, loosely suggests the ability to meet Class A and (or) B telecom 
max|TE| targets. 
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Figure 4-14: Moving RMS and maximum time offset estimations taken at the PTP slave with PTP 
transport through TC in the course of 24 hours. 

 

Figure 4-15: PPS rising edges generated by the PTP Slave (SyncBox/PTPv2) and Master (M600) when 
directly connected, captured over ~16min with infinite persistence. 

Next, we exploit the setup that relies on standalone master and slave devices, in Figure 4-7. As explained in 
Section 4.2.2.4, first we seek a baseline performance achieved with a direct Ethernet link between the master 
and the slave. This is the result shown in Figure 4-15, which consists in 1000 consecutive trigger captures 
taken at the oscilloscope, while taking the PPS output from the PTP master as the trigger source (yellow 
waveform). Since PPS by definition ticks once per second, 1000 rising edge samples are taken in the course 
of approximately 16 minutes. The result in the figure is all of these captures overlapped with persistence. Note 
that, each horizontal axis division of the display represents 100 ns, so in this case the offset of the slave PPS 
rising edges (green waveform) relative to the master oscillates from around -200 ns to -50 ns. This offset 
changes over time, so it is only indicative of achievable performance, but does not strictly represent the actual 
slave accuracy specifications. 

Next, we proceed to the setup in the bottom part of Figure 4-7. Now, instead of a direct link, the master and 
slave clocks communicate through two intermediate Typhoons that are running the BWT-developed TC 
application. The result is shown in Figure 4-16. Note that now the horizontal axis divisions represent 500 ns. 
Hence, the offset between the slave PPS (again in green) with respect to the master PPS (in yellow) in this 
particular capture oscillates from around -1.5 µs to 1.5 µs. As explained in Section 4.2.2.5, what is limiting the 
performance in this setup is mainly the approach adopted to synchronise the independent time scales of the 
Ethernet card and the BH2 in the Typhoon, which is being carried in software via the phc2sys. Hence, this 
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result does not reflect the actual performance capabilities of both the Ethernet card and the BH2. Nevertheless, 
it does validate the functionality of the TC application, as it is successfully operating in conjunction to COTS 
PTP equipment. It also loosely indicates that sub-microsecond performance is likely achievable with 
appropriate hardware-based synchronisation between the independent Ethernet/BH2 time scales. 

 

Figure 4-16: PPS rising edges generated by the PTP Slave (SyncBox/PTPv2) and Master (M600) 
when connected through two Typhoon TCs, captured over ~16min with infinite persistence. 

4.2.4 Packaging for the 5G OS 

The control plane, implemented by 5G OS, could be responsible for enabling PTP synchronisation support on 
a given node. To do so, 5G OS would have some metadata (the so-called descriptor), which would indicate 
that node X has HW timestamping capabilities and support PTP profile Y or PTP clock mode Z (say a 
transparent clock mode). 5G OS would then enable and configure the PTP support in the given node, by 
issuing e.g. an enable request. The OS would also be able to collect this knowledge (in descriptors) on-the-
fly, for example by probing sync capabilities in the network via IEEE 1588 management messages, or via the 
synchronisation harmoniser architecture described below. 

The synchronisation harmoniser is an intermediate piece of orchestration software to handle synchronisation 
configuration of nodes on behalf of 5G OS. A control function is needed on the node to be able to respond to 
harmoniser requests. A NETCONF/YANG interface permits the transfer of local synchronisation capabilities to 
the 5G OS, allowing it to form corresponding descriptors. In the case of the BWT Typhoon nodes the function 
chain is: 

5G OS (running on a VM) -> Sync Harmoniser (running on a VM) -> network -> Sync Controller (running in the 
Typhoon) -> PTP TC app (running in the Typhoon). 

A typical action sequence is: 

 The 5G OS asks for synchronisation for a tenant X. 

 The request is handled by the Synchronisation Harmoniser, which has direct communication to local 
Synchronisation Controllers (co-located with devices). The harmoniser then sends a request to a BWT 
Typhoon. 

 A synchronisation controller (say a daemon) is running in the Typhoon and receives the request. This 
is translated into a management mechanism to launch or configure a PTP application. For example, 
to launch the TC application bound to given Ethernet/802.11ad ports and with that enable PTP TC 
support. 

The descriptor would indicate capabilities that relate to the user space PTP applications that we can run in the 
BH2. For example, the descriptor could indicate (assuming something like a JSON format): 
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{ 
    “sync”:  { 
        “ieee1588”:  { 
    “modes”: [TC, BC, OC], 
            “profiles”: [default], 
            “ports”: [enp4s0, enp4s1, wlp8s0f0, wlp8s0f1] 
        } 
    } 
} 

which indicates the supported PTP modes, the PTP profiles and the hypothetical network ports through which 
we could send PTP traffic. 

And then we could indicate many other properties in the descriptor as we see fit to aid with the sync harmoniser. 
For example, the node’s contribution to time error, whether it supports IEEE 1588 management messages, 
maximum message rates, syntonisation functionalities and so on. 

4.3 Technical Component 4: Synchronisation harmonizer 

4.3.1 Summary Description 

New services envisioned in 5G networks will require a slightly different synchronisation architecture for 
synchronizing different entities in the network. The standard “tree” topology for synchronisation is no longer 
optimal for some of the expected new services enabled in 5G networks. Algorithms like best master clock 
algorithm (BMCA) would probably satisfy the requirements of most of the services, but there are also services 
this algorithm would not be able to support optimally. One such service is localisation. In order to perform a 
time of arrival (ToA) or time difference of arrival (TDoA) localisation, the anchor nodes, i.e. access nodes, must 
be synchronised with a precision in the area of a few nanoseconds. In this scenario, a precise synchronisation 
of the access nodes with the grand master clock (GMC) is not of interest. More important is the precision of 
the mutual time synchronisation between the neighbouring access nodes, which provide the localisation 
service. 

Having new services with significantly diverse synchronisation requirements would bring additional complexity 
to the transport nodes, whether they are TCs or Boundary Clocks (BCs). These nodes would require more 
intelligence and the ability to support different algorithms for different requirements. Additionally, more 
knowledge about the topology of the network should be pre-stored in each of the nodes, or being 
communicated among them. Otherwise, the configuration of the network would be slower and not optimal. 

To cope with the new synchronisation requirements, the main intelligence must be shifted towards the control 
plane, instead of residing in the nodes. The synchronisation harmonizer, such as the one presented in [50], 
takes the responsibility for offering and providing different synchronisation services, topologies architectures 
and capabilities.  

One of the main objectives of the synchronisation harmonizer is to collect/obtain the synchronisation 
capabilities of the nodes in the network. It is supposed to have an overview on every synchronisation domain 
within the network. In addition, the synchronisation harmonizer should be aware of the established timing paths 
used for synchronisation, and whether the underlying technologies enable these paths. Since a mesh topology 
of the network is expected, the available synchronisation paths can be manifold. The synchronisation 
harmonizer would need to obtain information about the physical location of some of the access/transport 
nodes, in order to obtain synchronisation for location-based services [50]. 

The synchronisation harmonizer would have the role of deciding the optimal paths/configuration for fulfilling 
the synchronisation requirements for different services/applications. In this sense, different algorithms are bing 
developed for fulfilling the envisioned requirements. The main role of these algorithms would be to select the 
optimal primary reference clock (PRC) - or multiple PRCs – to be used, as well as the optimal paths for 
distribution of the synchronisation, depending on the desired requirements.  

IEEE 1588 [47] would be primarily used for synchronisation, leaving the role for the synchronisation harmonizer 
to run additional algorithms for aligning the synchronisation requirements with the synchronisation capabilities 
of the network. 
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4.3.2 Used programmable platforms and APIs (WP3) 

The synchronisation harmoniser should be able to communicate with most of the platforms that support IEEE 
1588 management interface.They were presented in deliverable D3.1 [4] and some of the developments have 
been recently incorporated to deliverable D3.2. The IEEE 1588 management interface [51] should be 
leveraged by the synchronisation harmonizer to configure the nodes belonging to different technology 
domains. 

A NETCONF/YANG management interface [36] can be also used to configure the individual nodes, when the 
required functions are not supported by the IEEE 1588 management protocol. A local configuration API can 
be used for exchanging the needed data with the synchronisation harmonizer.  

The synchronisation harmonizer provides an interface toward the network, responsible for obtaining node 
attributes needed for synchronisation. Using this interface, all of the necessary information for synchronisation 
capabilities of the nodes should be communicated/collected by the synchronisation harmonizer.  

The synchronisation harmonizer offers an API, responsible for processing different request for synchronisation. 
This is a high-level interface that introduces an abstraction of the synchronisation service. 

4.3.3 Function Design/Implementation/Evaluation 

The synchronisation harmonizer is not a hard real-time control function. This fact allows implementation of this 
function in SW on a general-purpose computer or a virtual machine. A Linux-like OS should be utilised to 
exploit the already available network/synchronisation tools. Under Linux, a PTP management client (pmc) is 
available and can be used for collecting information from PTP-capable nodes. The machine running pmc does 
not need to support PTP itself.  

The synchronisation harmoniser is able to accept requests from different applications. For this purpose, a 
separate API is being developed. In case the required requests cannot be fulfilled, the synchronisation 
harmonizer should inform the application about the offered synchronisation services. If multiple options are 
available, a negotiation should be conducted. 

The detailed block diagram of the synchronisation harmonizer function is shown in Figure 4-17. It follows the 
description as in deliverable D4.1 [3] but, in this case, all of the necessary blocks are separately shown. The 
database, as introduced in D4.1, consists of minimum 3 datasets. The first one contains the available TCs and 
BCs, as well as the topology of the synchronisation network. The second dataset contains the synchronisation 
paths, whose topology is not exactly known, but it can be utilised. Finally, the third dataset contains the 
synchronisation paths that were already established by the synchronisation harmonizer. 

Few different subroutines are available as well. A separate subroutine is used to collect synchronisation 
network topology data as well as data regarding available TCs and BCs and their capabilities. The main control 
subroutine is responsible for accepting requests from users/tenants regarding synchronisation services. 
Depending on the requests for a specific synchronisation service, a set of functions shown in Figure 4-17 (in 
the Set block) can be started in order to find a synchronisation topology as well as to optimise different 
parameters of the requested synchronisation service. Depending on the available use cases, the functions 
contained in this set can be updated, or new functions can be added. The communication towards the 
user/tenant is performed using the northbound interface and the configuration of the TCs and BCs is performed 
using the southbound interface. Depending on the discovery of topology change by adding/removing TCs and 
BCs, the main control subroutine can rerun the optimisation and topology function to obtain better 
synchronisation performance. 
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Figure 4-17: Detailed block diagram of the synchronisation harmonizer function. 

The implementation of the synchronisation harmonizer is performed using standard available programming 
languages (e.g. C/C++) on a Linux-based platform. Nevertheless, since this function is not hard real-time, 
Python represents the best option. For the needed database for storing the node synchronisation capabilities, 
many open source databases are available under Linux-like operating system. At this stage, a database stored 
in sqlite3 will be used, being the support for additional databases straightforward. 

To evaluate the developed algorithms, different scenarios for different synchronisation architectures would be 
considered. The algorithms for optimising the synchronisation topology will be implemented and their 
evaluation will be first performed in simulation. The main challenge is to confirm that the algorithms 
implemented in the synchronisation harmonizer lead to better synchronisation parameters at the slave nodes 
than that of the BMCA. To perform this evaluation, the models of the TCs/BCs should be develop, which are 
given in G.8271.1. Different scenarios and topologies will be provided for simulation. It should be verified that 
the developed algorithms perform better than BMCA or, at least, achieve similar performance. This is very 
dependent on the network topology and it should be taken into account. The simulations can be performed in 
different simulation environment. One simulator that can be used is NS-3. MATLAB can also be used, but this 
would involve more effort in order to develop a network model. 

Results on the evaluation of the synchronisation harmonizer will be captured in deliverable D4.3, when all of 
the platforms’ synchronisation capabilities and interfaces developed under WP3 are available. This would 
provide a quantitative insight of the performances that can be achieved. At this moment only functional testing 
can be performed but no real quantitative data can be presented. 

4.3.4 Packaging for the 5G-OS  

Not applicable. 



 

5G-PICTURE Deliverable  

 

H2020-ICT-2016-2017-762057 Page 90 of 104 30. Nov. 2018 

 

5 5G-PICTURE integration plans 

This document has described so far each of the functions developed in WP4 in isolation. However, within the 
broader context of 5G-PICTURE, the functions that are developed in WP4 bear a relation with the 
programmable platforms developed in WP3, and with the 5G OS developed in WP5. In addition, the functions 
that have been developed and reported in this deliverable, are the building blocks that will be used in the last 
year of the project to demonstrate larger integrated functions within the context of WP4 and WP6. 

Hence, in this section we put the WP4 functions in perspective, and discuss: i) the relation between each WP4 
function, the WP3 platform, and the WP5 5G OS, ii) the approach that 5G-PICTURE will take to on-board 
functions into the WP5 5G OS, and iii) an initial sketch of the integration plans between WP4 functions for D4.3 
and WP6. 

5.1 WP4 functions in the context of WP3 and WP5 

Table 5-1 describes the relation between each WP4 function reported in this deliverable, the WP3 platform 
where this function needs to be executed, and the way this function can be integrated with the 5G OS 
developed in WP5. 

Looking at the WP3 platforms (left column), we can distinguish two main categories. First, we have WP4 
functions that are developed in software and executed over a generic x86 compute platform (not specific to 
WP3), marked in purple. Second, we observe a set of WP4 functions that target a specific 
programmable/configurable platform developed in WP3, marked in green. 

Regarding at the integration between WP4 functions and the 5GOS in WP5 (right column), we see three main 
categories. First, we have WP4 functions that do not need to be integrated with the 5G OS, marked in red, 
since these simply provide some new non-programmable functionality. Second, we have a group of WP4 
functions that are control plane functions, marked in purple. These functions have to be integrated as 
components of the 5G OS, for example they could be a specific Domain Controller [52]. Finally, we have 
another type of WP4 functions, marked in orange, which can be packaged and on-boarded onto the 5GOS 
catalogue. The 5G OS will then be able to deploy the on-boarded functions dynamically over the appropriate 
WP3 platforms, in order to compose an end-to-end service. In the next subsection we provide more details on 
the different on-boarding strategies considered in 5G-PICTURE. 

Table 5-1: Relation between each WP4 functions, the WP3 platform where this function needs to be 
executed, and the way this function can be integrated with the 5G OS developed in WP5. 

WP3 Platform WP4 function Integration in WP5 5G OS 

RAN FUNCTIONS 

AIR platform – D3.2 
section  

Tech.Comp.#1: Optimal Massive MIMO 
functional split 

Descriptor describing Massive 
MIMO antenna configuration 

Generic x86 compute 
platform 

Tech.Comp.#2: Software based RAN 
functions in OAI 

VNF in VM/container plus 
associated descriptor 

Generic x86 compute 
platform 

Tech.Comp.#3: Control function to select 
optimal functional split in RAN 

Control plane function belonging 
to 5G OS 

Generic x86 compute 
platform or FPGA 
Xilinx Zynq - D3.2  

Tech.Comp.#4: RAN as a VNF for custom 
PDCP split and heterogeneous wireless DUs 

VNF in VM/container/FPGA plus 
associated descriptor 

API for bootstrapping the 
functions 

I2CAT Small Cell 
platform – D3.2  

Tech.Comp.#5: Sub6 wireless for fronthaul-
like RAN splits 

No interaction with 5G OS (it is a 
physical technology) 

TRANSPORT FUNCTIONS 

Generic x86 compute 
platform 

Tech.Comp.#1: TSON controller 
Control plane function belonging 
to 5G OS (domain controller) 



 

5G-PICTURE Deliverable  

 

H2020-ICT-2016-2017-762057 Page 91 of 104 30. Nov. 2018 

 

Huawei routing 
function – D3.2  

Tech.Comp.#2: Ethernet channel isolation 
through Flex-E 

No interaction with 5GOS (it is a 
physical technology) 

Huawei routing 
function – D3.2  

Tech.Comp.#3: Low latency cross-connect 
through X-Ethernet 

No interaction with 5G OS (it is a 
physical technology) 

Generic x86 compute 
platform 

Tech.Comp.#4: Segment routing 
Control plane function belonging 
to 5G OS (domain controller) 

Open Packet 
Processor – D3.2  

Tech.Comp.#5: Mobility function for railways 
scenarios 

P4 based function on-boarded 
into 5G OS 

I2CAT Small Cell 
platform – D3.2  

Tech.Comp.#6: On demand wireless slice on 
joint access/backhaul small cells 

Controller is a control function in 
5G OS (domain controller) 

On demand wireless slice, 
onboarded as descriptor warpping 
API call  

SYNCHRONISATION FUNCTIONS 

BWT Typhoon 
platform – D3.2  

Tech.Comp.#1: 1588 over IEEE 802.11ad 
No interaction with 5G OS (it is a 
physical technology) 

Generic x86 compute 
platform 

Tech.Comp.#4: Synchronisation Harmonizer 
Control plane function belonging 
to 5G OS (domain controller) 

5.2 The 5G-PICTURE approach to P/VNF on-boarding to 5G OS 

In this section we discuss the approach that 5G-PICTURE will take to onboard WP4 functions onto the WP5 
5G OS; namely the functions marked in orange in the right column of Table 5-1. 

Broadly, we can classify the taxonomy of “onboardable” functions considered in 5G-PICTURE in three groups: 

- Group 1: Functions packaged in a Virtual Machine (VM) or container, executed over a traditional x86 
compute platform. See as example the RAN Technical Component#2 in Table 5-1. 

- Group 2: Functions instantiated through a specific configuration of a WP3 platform. See for example 
the on demand wireless service provided by the Transport Technical Component#6 in Table 5-1. 

- Group 3: Functions deployed by instantiating a program on a WP3 programmable platform. See for 
example the mobility function implemented in P4 over the WP3 Open Packet Processor, in the 
Transport Technical Component #5 in Table 5-1. 

Group 1 functions can be considered traditional NFV functions, where descriptors for 5G service platforms and 
orchestrators are more mature, and are usually implemented through a JSON descriptor that points to the 
corresponding VM/container image in a repository, and provides the required meta-data to configure the 
function. 

Group 2 functions, will be packaged using a descriptor that points to the control element in the 5G OS that 
controls the WP3 platform where this function can be instantiated. In addition, the descriptor will contain the 
necessary information for the DO in the 5G OS to build the API call required to instantiate the function. 

Group 3 functions are developed as a P4 program defining a datapath that can be instantiated over a 
programmable WP3 platform. Notice that different programmable platforms can instantiate the same P4 
defined datapath, however the P4 program has to be compiled independently for each specific target (WP3 
platform). The approach considered in 5G-PICTURE is to have in a central repository an image of each P4 
function pre-compiled for all its potential targets. Thus, a P4 function descriptor will point to the specific WP3 
platform that can run this function, and to the corresponding pre-compiled image for that target. In order to 
deploy the function, the Domain Controller in the 5G OS needs to deliver the pre-compiled image to the 
corresponding target, where a local agent is in charge of instantiating the new image. Finally, when a Group 3 
function representing a datapath is deployed, it will return a configuration endpoint, namely a control plane 
element in the 5G OS that can be used to configure that datapath (e.g. using P4Runtime). Hence, one can 
define additional Group 2 functions wrapping the API calls to that control plane function. 

The interested reader can found a more in depth discussion about the 5G-PICTURE approach to onboard 
functions executed over programmable platform in deliverable D5.1, section 3.3.1.2 and 3.3.1.3 [52]. 



 

5G-PICTURE Deliverable  

 

H2020-ICT-2016-2017-762057 Page 92 of 104 30. Nov. 2018 

 

5.3 Initial WP4 integration plans toward D4.3 and WP6 

We describe in this section our tentative integration plans for the various WP4 functions, which will be executed 
during the last year of the project. We want to emphasize that these are tentative plans, hence subject to 
change. However, we believe it is worth to discuss them here in order for the reviewers to have a more clear 
understanding of the roadmap intended for the various functions. 

We foresee two main integration paths for the various WP4 functions. The first one is an integration among 
various WP4 functions, in order to demonstrate the WP4 vision of a multi-tenant transport network for 5G RANs 
introduced in deliverable D4.1 [3]. The second integration path is for a WP4 function to be included as part of 
the demonstration activities in WP6, to support the railways, stadium, or smart city demonstrators.  

So far, three tentative integration activities among WP4 functions have been identified, which will be reported 
in deliverable D4.3: 

- RAN integration activity: The goal will be to demonstrate the concept of flexible RAN functional splits 
implemented through software based RAN functions. 

o Involved WP4 functions: RAN Tech.Comp.#2 (RAN functional splits over OAI), and RAN 
Tech.Comp.#3 (FlexRAN controller). 

- Transport integration activity: The goal will be to demonstrate end-to-end connectivity between RAN 
functions over a multi-domain transport network. 

o Involved WP4 functions: Transport Tech.Comp.#1 (TSON), Transport Tech.Comp.#4 
(Segment Routing), and Transport Tech.Comp.#6 (Small Cells with joint access/backhaul). 

- Synchronisation integration activity: The goal will be to demonstrate the concept of Synchronisation 
as a Service introduced in D4.1 [3]. 

o Involved WP4 functions: Synchronisation Tech.Comp#4 (Sync Harmonizer), and 
Synchronisation Tech.Comp#1 (1588 over 802.11ad). 

Finally, the following WP4 functions will be used to support WP6 demonstrations: 

- Railway demonstration: Transport Tech.Comp.#5 (Mobility over OPP), will be used to support fast 

handovers in the railway demonstration. 

- Stadium demonstration: Transport Tech.Comp.#6 (Small Cells with joint access/backhaul), will be 

used to provide on demand connectivity services in the fan zone in the stadium use case. 

- Smart City demonstration: RAN Tech.Comp.#2 (RAN functional splits over OAI), and Transport 

Tech.Comp.#1 (TSON) will be used to demonstrate smart city services in Bristol as part of the smart 

city use case. 

Notice that the described plans are tentative, and new WP4 functions may be added to the WP6 
demonstrations during the next year. 
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6 Summary and Conclusions 

This deliverable reports on activities associated with all tasks in WP4, namely VNFs and PNFs for dynamic 5G 
RAN deployments (Task 4.1), Transport slicing for converged wired-wireless FH/BH networks and integration 
with 5G-PICTURE. Orchestrator (Task 4.2), and PNFs and VNFs to support synchronisation services in 
converged FH/BH networks (Task 4.3). The goal of this deliverable is twofold. On one hand, it analyses and 
evaluates a number of technical components defined in deliverable D4.1 related to each task. On the other 
hand, it provides the insights of how each technical component can be integrated with the 5G-PICTURE 5G 
OS delivered in the context of WP5 activities. 

In more detail, a number of 12 technical activities were presented and analysed regarding a) disaggregated 
RAN VNFs and PNFs (namely Optimal functional split, Implementation of functional split using the OAI 
platform, Flexible Functional Splits, Disaggregated Heterogeneous Base Station functionality and Wireless 
Transport Technologies with Functional Split Support), b) transport network technologies (TSON technology, 
X-Ethernet, Flex-Ethernet, Segment routing, OPP and a solution based on IEEE 802.11 technologies, both for 
access and BH (802.11ac modems) and c) synchronisation functions (IEEE 1588 over IEEE  802.11ad) and 
synchronisation harmonizer. 

Summary of contributions: 

Disaggregated RAN VNFs and PNFs 

 Optimal functional split: we optimize the access network parameters such as transmit powers of UEs 
and downlink beamformers for split 7-2 to improve the SE and EE. 

 Implementation of functional split using the OAI platform: our implementation work on the 3GPP split 
option 8, 7-1 and 6 in the deliverable D4.1. In deliverable D4.2 we present the compression scheme 
for the low physical functional split, and the latest implementation on the F1 interface aligned with the 
recent standardisation activities by 3GPP. 

 Flexible Functional Splits: we investigate ways to flexibly compose the logical BS from different 
applied RAN functional splits between disaggregated RAN entities. 

 Disaggregated Heterogeneous Base Station functionality: the processes for the CU (RRC, PDCP) 
and DU (RLC, MAC, PHY) operation already exist in OAI. In deliverable D4.2 we focus on the new 
elements of the network, being the F1oIP exchange protocol, and the Wi-Fi DUs. 

 Wireless Transport Technologies with Functional Split Support: we study eCPRI split [9] that is based 
on the transport of frequency domain samples between the Distributed Unit (CU) and the Remote 
Unit (RU). 

Transport network technologies 

 TSON technology: we enable TSN network programmability based on the SDN design paradigm while 
an external module to ODL, written in python, is developed to compute the path in the TSON network. 
Flex-E we provide technology primitives and functionalities while, the performance of a Flex-E 
demonstrator is evaluated in terms of achieved traffic protection and isolation, average throughput 
and latency. 

 X-Ethernet: X-Ethernet is a Huawei proprietary technology, where X stands for extended distance, 
expanded granularity and extremely low latency. Technology primitives together with demonstrators 
to investigate various performance metrics like throughput, delay, jitter etc. are presented. 

 Segment routing: a segment routing testbed was built based on Linux container technology and virtual 
router infrastructure. We provided background information for the basic segment routing functionality 
and terminology used, we analysed the testbed built, together with the configuration primitives. 
Relevant information for the functionality of the testbed, messaging and the protocol signalling were 
presented. 

 OPP: two different functionalities are described exploiting the OPP functionality. The first is a stateful 
load balancer, while the second is a network function for handover management. 

 Solution based on IEEE 802.11 technologies, both for access and BH (802.11ac modems): This 
technical component is used to provide a wireless connectivity service over a distributed area, and it 
is instantiated over prototype Wi-Fi Small Cells being developed in WP3. The services investigated 
are a) Service 1: Instantiation of e an access connectivity service composed of virtual APs over a set 
of physical Aps and b) Service 2: allocation of a connection through the wireless backhaul, which 
transport the traffic from such access service until a fibre attachment point. 
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Synchronisation functions 

 IEEE 1588 over IEEE  802.11ad: we study and analyze detection and transportation of 1588 frames 
over mmWave devices with minimal delay, supporting timestamping. 

 Synchronisation harmonizer: We devise and analyse the concept of synchronisation harmonizer. One 
of the main objectives of the synchronisation harmonizer is to collect/obtain the synchronisation 
capabilities of the nodes in the network. It has an overview on every synchronisation domain within 
the network. In addition, the synchronisation harmonizer is aware of the established timing paths used 
for synchronisation, and whether the underlying technologies enable these paths. 

Three technical components (13, 14 and 16) regarding synchronisation services defined in deliverable D4.1 
were reprioritised and will be presented in deliverable D4.3. A note is also provided regarding integration plans 
for the next deliverable D4.3 which is coupling with the integration of developed functions with the 5G OS 5G-
PICTURE orchestrator and also potential exploitation of the technical components by the project use cases 
defined in WP6. 
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8 Acronyms 

Acronym Description 

3GPP Third Generation Partnership Project 

5G Fifth Generation 

A-CPI Application-Controller Plane Interface 

A-MPDU Aggregated MAC Protocol Data Unit 

A-MSDU Aggregated MAC Service Data Unit 

AP Access Point 

API Application Programming Interface 

BBU Base Band Unit 

BC Boundary Clock 

BH Backhaul 

BMCA Best Master Clock Algorithm 

BS Base Station 

BSS Business Support System 

BVT Bandwidth Variable Transponders 

CBR Constant Bitrate 

CCAMP Common Control and Measurement Plane 

CDMA Carrier Sense Multiple Access 

CDR Clock and Data Recovery 

CLI Command Line Interface 

CN Core Network 

CO Central Office 

CoMP Coordinated Multi-Point 

COTS Commercial Off-The-Shelf 

CP Control Plane 

CPRI Common Public Radio Interface 

C-RAN Cloud-RAN 

CSMA Carrier-Sense Multiple Access 

cTE constant Time Error 

CU Centralised Unit 

CWDM Coarse WDM 

DA Destination Address 

DA-RAN Disaggregated Radio Access Network 

DAS Distributed Antenna System 

DC Data Center 
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DCI Data Center Interconnect 

DetNet Deterministic Ethernet 

DHCP Dynamic Host Configuration Protocol 

DL Downlink 

DMG Directional Multi-Gigabit 

DMS Directed Multicast Service 

D-RAN Distributed-RAN 

DA-RAN Disaggregated-RAN 

DS Distributed System 

DSCP Differentiated Services Code Point 

dTE dynamic Time Error 

DU Distributed Unit 

DWDM Dense WDM 

eCPRI enhanced CPRI 

EDFA Erbium Doped Fibre Amplifier 

eMBB enhanced Mobile Broadband 

eNB evolved Node B 

EoMPLS Ethernet over Multi-Protocol Label Switching 

EoS Ethernet over SONET/SDH 

EPC Evolved Packet Core 

EPL Ethernet Private Line 

ETSI European Telecommunications Standards Institute 

EVM Error Vector Magnitude 

EXP Experimental bits 

F1AP F1 Application Protocol 

F1oIP F1 over IP 

FDD Frequency-Division Duplexing 

FFT Fast Fourier Transform 

FH Fronthaul 

Flex-E Flexible Ethernet 

FlexO Flexible OTN 

FPGA Field-Programmable Gate Array 

FTM Fine Timing Measurement 

FTS Full Timing Support 

FTS Full Timing Support 

FWA Fixed Wireless Access 

GEO Geosynchronous 
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GFP Generic Framing Procedure 

GNSS Global Navigation Satellite Service 

GPP General Purpose Processor 

GPS Global Positioning System 

GTP GPRS Tunneling Protocol 

HARQ Hybrid Automated Repeated reQuest 

HDLC High-Level Data Link Control 

HL-SYNC Higher Layer timer Synchronisation 

HSS Home Subscriber Server 

HW Hardware 

I/Q In-phase/Quadrature 

IAB Integrated Access and Backhaul 

ICP Internet Content Providers 

IFFT Inverse Fast Fourier Transform 

IS-IS Intermediate System to Intermediate System 

ISP Internet Service Provider 

KPI Key Performance Indicator 

LTE Long Term Evolution 

LTE-A LTE Advanced 

MAC Medium Access Control 

MAN Metropolitan Area Network 

max|TE| maximum absolute Time Error 

MCS Modulation and Coding Scheme 

MEF Metro Ethernet Forum 

MH Midhaul 

MME Mobility Management Entity 

mMTC massive Machine-Type Communications 

mmWave millimetre Wave 

MNO Mobile Network Operator 

MTIE Maximum Time Interval Error 

MTU Maximum Transmission Unit 

NB-IOT NarrowBand-Internet of Things 

nFAPI network Functional Application Platform Interface 

NFV Network Functions Virtualisation 

NGFI Next Generation Fronthaul Interface 

NGMN Next Generation Mobile Networks 

NG-PON2 Next-Generation PON 2 
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NG-RAN Next Generation RAN 

NIC Network Interface Card 

NLoS Non-Line of Sight 

NR New Radio 

NS Network Service 

NSI Network Slice Instance 

NSSI Network Slice Sub-network Instance 

OAI OpenAirInterface 

OBSAI Open Base Station Architecture Initiative 

OC Ordinary Clock 

OCXO Oven Controlled Crystal Oscillator 

ODU Optical channel Data Unit 

OFDM Orthogonal Frequency-Division Multiplexing 

OLT Optical Line Terminal 

ONF Open Networking Foundation 

ONU Optical Network Unit 

OPP Open Packet Processor 

OS Operating System 

OSPF Open Shortest Path First 

OSS Operation Support System 

OTN Optical Transport Network 

PCS Physical Coding Sublayer 

PDCP Packet Data Convergence Protocol 

PDU Protocol Data Unit 

PDV Packet Delay Variation 

P-GW Packet Data Network Gateway 

PHY Physical 

PLME SAP PHY-layer Management Entity SAP 

PMD Physical Media Dependent 

PMP Packet Manipulator Processor 

PNF Physical Network Function 

PON Passive Optical Network 

PoP Point of Presence 

PoS Packet over SONET 

PPDU PHY Protocol Data Units 

PPP Point-to-Point Protocol 

PPS Pulse-Per-Second 



 

5G-PICTURE Deliverable  

 

H2020-ICT-2016-2017-762057 Page 102 of 104 30. Nov. 2018 

 

PRACH Physical Random Access CHannel 

PRTC Primary Reference Time Clock 

PSDU Physical Service Data Unit 

PTP Precision Time Protocol 

PTS Partial Timing Support 

QoE Quality of Experience 

QoS Quality of Service 

RA Receiver Address 

RAN Radio Access Network 

RAT Radio Access Technology 

RAU Radio Aggregation Unit 

RCC Radio Cloud Center 

RF Radio Frequency  

RLC Radio Link Control 

RN Remote Node 

RoE Radio-over-Ethernet 

RRC Radio Resource Control 

RRH Remote Radio Head 

RRU Remote Radio Unit 

RTT Round Trip Time 

RU Radio Unit 

SAP Service Access Point 

S-BVT Sliceable-Bandwidth Variable Transponder 

SCF Small Cell Forum 

SDH Synchronous Digital Hierarchy 

SDN Software-Defined Networking 

SD-RAN Software-Defined RAN 

SF Service Function 

SFC Service Function Chaining 

SFP+ Enhanced Small Form-factor Pluggable 

S-GW Serving Network Gateway 

SID Segment Routing Identities 

SLA Service Level Agreement 

SML Station Management Layer 

SNR Signal to Noise Ratio 

SONET Synchronous Optical Networking 

SPE Synchronous Payload Envelope 



 

5G-PICTURE Deliverable  

 

H2020-ICT-2016-2017-762057 Page 103 of 104 30. Nov. 2018 

 

SR Segment Routing 

STA Station 

STF Short Training Field 

SW Software 

SyncE Synchronous Ethernet 

TA Timing Advertisement 

TAE Time Alignment Error 

T-BC Telecom Boundary Clock 

TC Transparent Clock 

TCXO Temperature Compensated Crystal Oscillator 

TDD Time-Division Duplexing 

TDEV Time Deviation 

TDMA Time Division Multiple Access 

TDM-PON Time Division Multiplexed PON 

TE Traffic Engineering 

TEID Tunnel Endpoint Identifier 

T-GM Telecom GrandMaster 

TIE Time Interval Error 

TM Timing Measurement 

TN Transport Node 

TOSCA Topology and Orchestration Specification for Cloud Applications 

TSF Timing Synchronisation Function 

TSON Time Shared Optical Network 

TSU Timestamping Unit 

TTI Transmission Time Interval 

TWSTT Two-Way Satellite Time Transfer 

UDN Ultra-Dense Networking 

UE User Equipment 

UL Uplink 

UNI User Network Interface 

UP User Plane 

uRLLC ultra-Reliable and Low-Latency Communications 

UTC Coordinated Universal Time 

vAP virtual Access Point 

vBBU virtual BBU 

VBR Variable Bitrate 

VC Virtual Concatenation 
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VLIW Very Long Instruction Word 

VMiet Virtual Machine 

VNF Virtual Network Function 

VPN Virtual Private Network 

WAN Wide Area Network 

WDM Wavelength Division Multiplexing 

WRPTP White Rabbit extension to PTP 
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