

5G Programmable Infrastructure Converging disaggre-
gated network and compUte REsources

D3.1 Initial report on Data Plane Pro-
grammability and infrastructure

components

This project has received funding from the European Union’s Framework

Programme Horizon 2020 for research, technological development and

demonstration

5G PPP Research and Validation of critical technologies and systems

Project Start Date: June 1st, 2017 Duration: 30 months

Call: H2020-ICT-2016-2
Date of delivery: March 31st 2018

April 4th 2018

Topic: ICT-07-2017 Version 1.0

Project co-funded by the European Commission

Under the H2020 programme

Dissemination Level: Public

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 2 of 80 04. Apr. 2018

Grant Agreement Number: 762057

Project Name:
5G Programmable Infrastructure Converging dis-
aggregated network and compUte REsources

Project Acronym: 5G-PICTURE

Document Number: D3.1

Document Title:
Initial report on Data Plane Programmability and in-
frastructure components

Version: 1.0

Delivery Date: March 31st 2018 (April 4th 2018)

Responsible:
Consorzio Nazionale Interuniversitario per le
Telecomunicazioni (CNIT)

Editor(s):
Salvatore Pontarelli (CNIT),
Stefan Zimmermann(ADVA)

Authors: Jens Bartelt (AIR), August Betzler (i2CAT),
Giuseppe Bianchi (CNIT), Steinar Bjørnstad (TP),
Marco Bonola (CNIT), Daniel Camps (i2CAT), Chia-
Yu Chang (EUR), Jay-Kant Chaudhary (TUD), Mar-
cus Ehrig (IHP), Paris Flegkas (UTH), Eduard Gar-
cía-Villegas (i2CAT/UPC), Jesús Gutiérrez (IHP),
Jong Hun Han (UNIVBRIS-HPN), Joan J. Aleixendri
(i2CAT), Matty Kadosh (MLNX), Vaia Kalokidou
(UNIVBRIS-CSN), Nikos Makris (UTH), Nebojsa
Maletic (IHP), Peter Legg (BWT), Salvatore Pon-
tarelli (CNIT), Marco Spaziani (CNIT), Anna Tza-
nakaki (UNIVBRIS-HPN), Raimena Veisllari (TP),
Stefan Zimmermann(ADVA)

Keywords:
Dataplane programmability, programmable network
platform, optical technologies, wireless technologies

Status: Final

Dissemination Level Public

Project URL: http://www.5g-picture-project.eu/

http://www.5g-picture-project.eu/

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 3 of 80 04. Apr. 2018

Revision History

Rev. N Description Author Date

0.1 Initial Draft
Salvatore Pontarelli

(CNIT)
07/12/2017

0.2 First contributions integrated
Salvatore Pontarelli

(CNIT)
26/02/2018

0.3 Added IHP-BWT-EUR contribution
Salvatore Pontarelli

(CNIT)
01/03/2018

0.4 Added IHP contribution on MIMO Jesús Gutiérrez (IHP) 13/03/2018

0.5 First content check Jesús Gutiérrez (IHP) 14/03/2018

0.6
Added UNIVBRIS-HPN contribution on

Optical Programmability
Jong Hun Han

(UNIVBIS-HPN)
15/03/2018

0.7 First internal review
Stefan Zimmermann

(ADVA)
15/03/2018

0.8 Incorporated reviewers comments
Salvatore Pontarelli

(CNIT)
26/03/2018

0.9 Incorporated additional authors
Salvatore Pontarelli

(CNIT)
28/03/2018

0.95 Final technical review
Anna Tzanakaki

(UNIVBRIS-HPN)
03/04/2018

1.0 Final review and submission Jesús Gutiérrez (IHP) 04/04/2018

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 4 of 80 04. Apr. 2018

Table of Contents

LIST OF FIGURES ... 7

LIST OF TABLES ... 9

EXECUTIVE SUMMARY ... 10

INTRODUCTION .. 11

Organisation of the document ...11

1 STATE OF THE ART .. 13

1.1 Data-plane programmability ..13
1.1.1 SDN/OpenFlow: limitations and extensions ... 13
1.1.2 Fully programmable data plane switches ... 13

1.2 Optical Network Programmability ..15

1.3 C-RAN programmability ...15

2 DESCRIPTION OF SELECTED PLATFORMS ... 19

2.1 VC709 Platform ..19

2.2 NetFPGA-SUME ..20

2.3 Mellanox Spectrum™ Ethernet Switch ...21

2.4 Xilinx Zynq UltraScale+ MPSoC ZCU102 (OAI target) ..21

2.5 Typhoon Platform ..23

2.6 ProVMe ..24

2.7 Gateworks Ventana..25

2.8 digiBackBoard ..25
2.8.1 digiBackBoard as a wireless communications node ... 26
2.8.2 digiBackBoard as an interface across technologies .. 26

2.9 Xilinx VCU-110 ..27
2.9.1 Evaluation platform .. 27
2.9.2 Faster technology SFP+ interface board FM-S18 .. 27
2.9.3 Block diagram ... 28

2.10 IAF 5G Development Platform (F-PU 5G) ..30

3 FUNCTIONAL DEFINITION OF PROGRAMMABLE PLATFORMS ... 32

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 5 of 80 04. Apr. 2018

3.1 SDN agent and controller development for control- and data-plane in Optical transport in support of joint
FH/BH 32

3.2 Architectural definition of programmable C-RAN ...33

3.3 Open Packet Processor (OPP) ...34
3.3.1 Per-flow stateful model .. 35
3.3.2 Aggregation tasks and lazy evaluation functions .. 37
3.3.3 Calendar .. 37
3.3.4 Packet Manipulator Processor .. 38

3.4 OAI platform for SDN-based programmable network functions ...40

3.5 Porting of OAI on the Zynq platform ..42

3.6 Point-to-Multipoint (P2MP) MAC processor ...43
3.6.1 Objectives ... 43
3.6.2 Installation and link establishment ... 43
3.6.3 Mesh network architectures/topologies .. 44
3.6.4 Medium access ... 45

3.6.4.1 Chain / Tree... 45
3.6.4.2 Mesh ... 45

3.6.5 Functionalities of the MAC layer... 45

3.7 NETCONF server and Yang models for Time Sensitive Networks (TSN) ...45

4 HARDWARE ABSTRACTIONS .. 48

4.1 APIs ..48
4.1.1 APIs for the BWT Typhoon platform ... 48
4.1.2 APIs for the GateWorks Ventana platform. .. 48
4.1.3 Ethernet-based API for Read/write of FPGA registers .. 50

4.2 OAI or Interface for Physical Network Functions ..50

4.3 Programming languages for data plane programmability ..51
4.3.1 OpenCL development of network functionalities ... 51
4.3.2 Development of P4 compiler for Spectrum device ... 52

4.3.2.1 Mellanox P4 Compiler main components ... 52

5 HARDWARE TECHNOLOGIES .. 54

5.1 Passive optical technologies ...54

5.2 Elastic optical technologies ..55

5.3 Time sensitive Ethernet ..55
5.3.1 Deterministic delay mechanisms for Ethernet ... 55
5.3.2 Bounded delay aggregation and fixed delay forwarding .. 57

5.4 RF processing and modelling ..57
5.4.1 Ray-tracing Tool .. 58

5.4.1.1 Sub-6 GHz LTE Massive MIMO coverage cell .. 58
5.4.1.2 mmWave Access Points (APs) along the trackside ... 58

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 6 of 80 04. Apr. 2018

5.5 RF/BB processing ...60
5.5.1 SDN enabled routing and forwarding between RU and BBU .. 60
5.5.2 In-Band E-CPRI for enhanced synchronization ... 61
5.5.3 C-RAN functional split as programmable network function ... 61
5.5.4 DSP and Layer-1 Functions Integrated into Radio Units ... 63

5.5.4.1 AADU Architecture .. 63
5.5.4.2 AADU Functions and Processors ... 64
5.5.4.3 AADU Functional Split ... 65
5.5.4.4 Interconnect architecture ... 66

5.6 MIMO at mmWave ..67
5.6.1 LoS MIMO at mmWave frequencies ... 69
5.6.2 RF front-ends for MIMO at mmWave ... 70

5.7 Interfaces - Multi-Protocol / Multi-PHY interfacing functions (MPIs) ...71
5.7.1 Initial design for optical edge nodes ... 71
5.7.2 Traffic adaptation at lower layers ... 72
5.7.3 Synchronization .. 72

6 SUMMARY AND CONCLUSIONS ... 74

7 REFERENCES ... 75

8 ACRONYMS .. 78

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 7 of 80 04. Apr. 2018

List of Figures

Figure 1: FDD LTE timing. ... 16

Figure 2: User data plane forwarding path in disaggregated RAN. ... 17

Figure 3: An exemplary plot of computational complexity in GOPS verses downlink throughput for different
user certain time 𝒕. ... 18

Figure 4: An exemplary plot showing computational complexity in GOPS in UL and DL for different components
of macro cell site. .. 18

Figure 5: VC709 with 4x 10G SFP+ FMC card. .. 19

Figure 6: A block diagram of server test machine with the FPGA platform and the FMC card. 20

Figure 7: Xilinx Zynq ZCU102 interfaces. .. 22

Figure 8: BWT Typhoon block diagram. .. 24

Figure 9: ADVA FSP 150 ProVMe series. ... 24

Figure 10: Gateworks Ventana platform equipped with 3 wireless NICs and omnidirectional antennas. 25

Figure 11: IHP’s digiBackBoard. .. 26

Figure 12: Possible use of the MPI to interconnect different programmable blocks. 27

Figure 13: VCU110 prototype board. ... 28

Figure 14: FM-S18. .. 28

Figure 15: 100G IP Core evaluation platform. ... 29

Figure 16: IAF 5G Development Platform. .. 30

Figure 17: F-PU 5G block diagram. ... 31

Figure 18: Configuration for the development of an agent and controller for SDN. .. 32

Figure 19: Network connection for SDN enabled RU and BBU. ... 33

Figure 20: Architecture of OPP. ... 34

Figure 21: Stateful element scheduling options. P1 and P2 belong to the same flow therefore they use the
same flow context. P3, P4 and P5 belong to different flows and can concurrently access memory. 36

Figure 22: PMP top architecture. ... 38

Figure 23: PMP Single lane structure. ... 39

Figure 24: OpenAirInterface and FlexRAN platforms to support SD-RAN. ... 40

Figure 25: Multi-agent model and FlexRAN controller in a disaggregated RAN. .. 42

Figure 26: FPGA offloading process for the OAI RAN. ... 43

Figure 27: a) single hop point-to-point, b) daisy chain, c) single hop point-to-multipoint, d) complex mesh. . 44

Figure 28: The Yuma123 framework. .. 46

Figure 29: Yang model of the I2cat-box. ... 49

Figure 30: the Ethernet frame for Read/write of FPGA registers. ... 50

Figure 31: High level Agent description for handling OAI PNFs and VNFs. ... 51

Figure 32. Mellanox’s P4 target architecture. .. 52

Figure 33. P4 compiler architecture. .. 53

Figure 34: ADVA’s WDM-PON in the 5G-XHaul network. ... 54

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 8 of 80 04. Apr. 2018

Figure 35: Aggregation of multiple deterministic packets streams into virtual containers while preserving packet
gaps. ... 57

Figure 36. Vertical Rail – Sub-6 GHz LTE Massive MIMO cell. .. 58

Figure 37. Vertical Rail – mmWave APs along trackside. ... 59

Figure 38. Bristol Temple Meads route (1.4 km). .. 59

Figure 39. Bristol Temple Meads - Rays for a specific point. .. 59

Figure 40. London Paddington route (3.5 km). .. 60

Figure 41. London Paddington – Rays for a specific point. ... 60

Figure 42. In-Band eCPRI protocol processing unit. ... 61

Figure 43: Generic Interface Ports for OAI Entities. .. 62

Figure 44: Fronthaul throughput of 10 MHz radio bandwidth of two functional split. 62

Figure 45: RU prototype. ... 62

Figure 46: Logical C-RAN deployment example. .. 63

Figure 47: AADU overall architecture. ... 64

Figure 48: Physical layer processing chain. .. 64

Figure 49: AADU hardware architecture.. 65

Figure 50: AADU functional split options. .. 65

Figure 51: AADU interconnect options. ... 66

Figure 52: RF analogue beamforming mmWave MIMO system supporting single stream transmission. 67

Figure 53: Conventional MIMO where all the signal processing is done in digital domain. 68

Figure 54: Hybrid precoding transmitter architecture. ... 68

Figure 55: RF Analogue beamforming structures: fully-interconnected structure (left), partially-interconnected
structure (right). .. 68

Figure 56: LOS MIMO system [58]. ... 69

Figure 57: LOS MIMO system with super-arrays [59]. .. 69

Figure 58: Examples of different mmWave beamforming architectures: a) massive mmWave array, b) hybrid
beamforming mmWave MIMO architecture with subarrays. .. 70

Figure 59: 60 GHz RF front-ends: RF board with beamforming to be used with off-the-shelf up/down converter
(left) and complete RF front-end board (right). ... 70

Figure 60: Edge node equipped with HW programmability features. .. 72

Figure 61: Example of streams coming from the wireless access domain to the optical transport domain. ... 72

Figure 62: Multi-PHY/Multi-Protocol Interfacing solution enabling synchronization across technology domains.
 .. 73

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 9 of 80 04. Apr. 2018

List of Tables

Table 1: Key characteristics of the Xilinx Zynq ZCU102. .. 22

Table 2: FlexRAN API calls. .. 41

Table 3: Data rate for different AADU options. .. 67

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 10 of 80 04. Apr. 2018

Executive Summary

This document corresponds to deliverable D3.1, “Initial report on Data Plane Programmability and infrastruc-
ture components” of the H2020 5G-PICTURE project. The deliverable provides the description of the platforms
for data plane programmability and the initial specification of the interfaces, programming models, and hard-
ware abstractions that will be developed during the course of the project.

Several solutions for data plane programmability, dealing with the design and implementation of programming
platforms for both fronthaul/signal processing and backhaul/packet processing are presented together with the
relevant exposed methods to abstract the underlying platforms. Finally, the deliverable reports the study on
infrastructure components and multi-protocol/multi-PHY interfacing technologies.

A more precise and definitive detailed architectural description of the programmable platforms will be provided
in deliverable D3.2, with due date November 2018.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 11 of 80 04. Apr. 2018

Introduction

Network nodes (being wired switches, radio stations, or even end terminals) have been traditionally developed
for extremely specific purposes: support a given and possibly small set of communication or forwarding
needs. Indeed, innovation was (and of course still is) driven by lengthy standardization processes, devised to
specify the behaviour and the inter-operation of the nodes and to formalize such specification into one or more
protocols, independently implemented once for all by device vendors in closed products. This historical trend
allowed the widespread diffusion of several network technologies providing a constant improvement of the
network nodes performance.

Unfortunately, networks today are extremely complex and diversified: the original Internet nodes, historically
limited to switches and routers, have been massively complemented with a variety of heterogeneous middle-
boxes, such as network address translators, tunnelling entities, load balancers, firewalls, intrusion detection
systems, traffic monitoring probes, etc. The networks today must be made able to promptly accommodate (in
very different environments) very diverse end points, from handheld devices to sensors and actuators inte-
grated into physical objects (the so-called "Internet of Things"), and are called to sustain a dramatic evolution
not only in terms of scale ("big data"), but also in terms of complexity and diversity in their traffic generation
patterns and relevant requirements (human end points, machine-to-machine relations, content retrieval from
caching and replica servers, flash crowd events, etc.).

This complex scenario makes much more difficult to maintain the above mentioned development model of
network nodes in which they were designed to efficiently perform an extremely specific task and to support a
well-defined set of protocols. Instead, today it is more and more important to have flexible and reconfigurable
network nodes that are able to: i) support different sets of functionalities depending on the specific network
location in which they are deployed; ii) dynamically change the supported set of functionalities depending on
the network condition and/or the type of traffic/service to manage and iii) be easily upgradable if different
service/protocols arise. On the other hand, this flexibility cannot be traded off against network performances.

In this scenario programmable network platforms are the enabling factor that allows developing complex net-
work functionalities without compromising the performance levels achievable with fixed purpose network de-
vices. These platforms should provide several common aspects in the different network domains (dataplane,
optical, and radio access). The programmable network platforms must provide clear programming models that
will allow development of network functions (NFs), decoupling the definition of the function from the specific
platform-dependent implementation. Possible programming models are for example the Domain Specific Lan-
guages (DSLs) such as P4 language for programmable dataplanes or the OpenCL language for the definition
of digital signal processing (DSP) radio functions. Moreover, the control/data plane separation enabled by the
use of SDN technologies that is dominating the wired network scenario can be extremely useful also in the
radio and optical network domains. Finally, a set of hardware abstractions and/or interfaces must be developed
to provide to the upper layers of the network management a sort of API to easily manage the configuration of
the programmable platforms.

This deliverable discusses the initial specification of the interfaces, programming models, and hardware ab-
stractions of the programmable network platforms that will be developed in the 5G-PICTURE project.

Organisation of the document

This deliverable is structured as follows: Section 1 provides a state-of-the-art review programmability of differ-
ent network technologies. This includes dataplane, optical network, and radio access network. In section 2,
the document presents the various target hardware platforms selected by the 5G-PICTURE partners as foun-
dations for their programmable network platforms. Some of the hardware platforms are result of development
work performed by some specific partners. The functionalities of these platforms will be enhanced and/or fur-
ther exploited for improving programmability capabilities. Some of the other hardware platforms are off-the-
shelf platform acquired by the partners. In the latter case, the platform choices are not only based on partner-
specific programmability requirements, but also on easy integration of the work done by different partners.
Section 3 presents the initial functional definitions of the programmable platforms that are under development
in the current phase of the project and will be finalized in deliverable D3.2. The platform programmability re-
quires a set of methodologies allowing common abstractions of the underlying hardware. Those methodolo-
gies, or simply called hardware abstractions, are presented in section 4. Section 5 illustrates the different

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 12 of 80 04. Apr. 2018

hardware technologies developed in 5G-PICTURE that provide basic building blocks of the 5G network archi-
tecture, comprising novel passive and elastic optical as well as RF and baseband (BB) processing technolo-
gies. Finally, section 6 contains the summary and conclusions.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 13 of 80 04. Apr. 2018

1 State of The Art

This section summarises the State-of-The-Art (SoTA) of the programmability features of different network ele-
ments composing the 5G scenario. In particular, it describes the programmability of data plane, optical network,
and C-RAN.

1.1 Data-plane programmability

5G networks must efficiently and flexibly support an ever growing variety of heterogeneous middlebox-type
functions such as network address translation, tunneling, load balancing, traffic engineering, monitoring, intru-
sion detection, etc. In the last years, the community has attempted to address the programmability of such
network functions with two complementary approaches: Software-Defined Networking (SDN) and Network
Function Virtualization (NFV).

However, these approaches have so far remained disjoint. SDN has focused on the clean separation of control
and data plane via open interfaces. It has exploited re-configurability of high performance switching hardware
only to a very small extent (i.e. due to the limited flexibility of OpenFlow [1] as southbound interface). Con-
versely, NFV has fostered full programmability of network functions, but mainly via SW on commodity plat-
forms. Hence it is subject to performance limitations, and in general not relying on open programming inter-
faces. In this section, we first describe the SDN/OpenFlow limitations, and then we discuss the most up-to-
date research and industrial initiatives that aim to supersede these limitations.

1.1.1 SDN/OpenFlow: limitations and extensions

Early SDN approaches (and still most of today’s real world deployments) rely on the relatively poorly flexible
OpenFlow abstraction as southbound (i.e. node-level, using RFC 7426's terminology) programming interface.
OpenFlow is perfectly suited to configure forwarding behaviours executed at wire speed in the switches, ex-
pressed as switch/router flow tables, but shows severe limitations when it comes to deploy more complex
(e.g. stateful) flow processing and filtering functions. For this reason, most of today’s network program-
ming frameworks circumvent OpenFlow's limitations by promoting a “two-tiered” [2] programming model: any
stateful processing intelligence of the network applications is delegated to the network controller, whereas
OpenFlow switches are limited to install and enforce stateless packet forwarding rules delivered by the remote
controller. This delegation of intelligence to the centralized controller thus causes performance, latency, and
signalling overhead, which hinders the deployment of truly scalable software-implemented control plane
tasks at wire speed, i.e. while remaining on the fast path.

This problem is of course not new, and also well-known by the Open Networking Foundation (ONF), the body
which standardises OpenFlow since 2011. Indeed, in the course of the OpenFlow standardisation process, we
have witnessed a hectic evolution of the standard, but backward compatibility reasons and pragmatism have
so far prevented OpenFlow from incorporating the flexibility necessary for implementing advanced packet pro-
cessing tasks. As a matter of fact, and up to the latest specification version 1.5 [3], several OpenFlow exten-
sions have been devised to fix punctual shortcomings and accommodate specific needs. Such evolution has
led to the incorporation of extremely specific stateful primitives into the OpenFlow standard (such as meters
for rate control, group ports for fast failover support or dynamic selection of one among many action buckets
at each time - e.g. for load balancing -, synchronized tables for supporting learning-type functionalities, etc. –
see details in [3]). Despite such many tailored OpenFlow extensions, we are still very far from being able to
deploy typical Middlebox appliance features in an OpenFlow switch. At the same time, another limitation of the
OpenFlow approach is emerging. It is related to the way the header fields are defined in the OpenFlow stand-
ard. In fact, the standard explicitly defines the specific packet fields that are used as inputs for the OpenFlow
match/action stages. Therefore, it is not possible to use a custom defined header for the matching stages. This
limitation has been faced until now by defining a new set of fields in each revision of the standard. The first
OpenFlow version had only 12 fields, while the OF1.5 revision defines up to 42 fields [3]. Since this approach
was not sustainable, the proposal of a complete protocol independent packet processing has emerged [4].

1.1.2 Fully programmable data plane switches

As already mentioned, even if NFV in principle addresses full programmability of network functions, it comes
with two fundamental caveats. First, approaches proposed so far do not provide an “open” programming model
for the data plane operation of the network function itself. Second, fast-path (wire speed) processing in SW for
multi gigabit/s links, even if in principle attainable with massive multi-core parallelization and Network Interface
Card (NIC)-level accelerations, e.g. Data Plane Development Kit (DPDK), remains extremely demanding, es-

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 14 of 80 04. Apr. 2018

pecially when the design goal is to retain independence from the underlying platform. The point is that involv-
ing a CPU in packet-by-packet processing comes with an overly severe overhead (with multiple micro-
instructions frequently necessary to perform a packet-level operation that in HW could be even implemented
within just a clock cycle). It is hardly compatible with the very tight requirements of a wire-speed/fast-path
processing task (a 64 bytes packet takes only about 5 ns on a 100 Gb/s speed). And, to make things worse,
software solutions cannot take advantage of dedicated HW components, such as Ternary Content-Addressa-
ble Memories (TCAMs), which can trivially solve problems like wildcard matching in O(1) complexity. As of
now, it does not yet exists an equivalent O(1) complexity software implementation counterpart.

For these reasons, in the last couple of years, a new research trend has started to challenge improved pro-
grammability of the data plane via domain-specific packet processing HW platforms or chipsets, which still
attempt to expose very flexible and general programming interfaces and languages (somewhat comparable to
CPU-based programming), but are specifically designed for packet-level processing tasks.

Probably the most popular initiative in this fresh field is P4 [4]. The P4 initiative started from the observation
that while in the past network switches had a fixed and well-known behaviour, today a new generation of fully
reprogrammable high speed HW switch architectures is emerging. Representative example architectures in-
clude the reconfigurable match tables introduced in [35], the Intel FlexPipe technology [5] and, at least to some
extent, the way more flexible header matching promoted by the Huawei Protocol Oblivious Forwarding (POF)
initiative [6]. The P4 programming language [4] thus emerged as an attempt to programmatically describe
the packet processing pipeline [35] via “packet programs” written in a high level language that can be com-
piled for different HW targets. Still, despite the current P4 hype and the significant attention that P4 has re-
ceived by the networking community, it is at least fair to say that P4 is not yet “the” solution to “all possible”
data-plane programming needs. We specifically see at least three major open issues, which motivate (and
give the basis of) our planned work within the 5G-PICTURE project.

First, P4 is of course NOT a programmable switch architecture, but it is (and remains) a programming
language which, as such, requires some underlying HW architectures (chipsets) capable of “running” P4
packet programs. Surprisingly, while P4 “as a language” has been dissected into full details, very little research
has been disclosed so far on the platforms devised to support it. In the last year several industrial initiatives
started to provide P4 compatible hardware platforms: the Barefoot TofinoTM programmable switch series has
been presented few months ago1, the Netronome Smart NIC is able to use P4 as a programming language2,
and also a Field Programmable Gate Array (FPGA) based board from Netcope3 has recently appeared in the
market. The analysis and the design of novel hardware architectures able to support P4 programmability
seems to be a novel and fast growing research activity with still many open questions. One of the scopes of
5G-PICTURE is thus to understand how to compile P4 programs for already existing HW platforms (HW plat-
forms provided by the switch manufacturers involved in 5G-PICTURE), and, complementarily, (ii) how to ex-
tend current HW to support P4 packet programs. A second, and perhaps even more fundamental question,
relates to thoroughly understanding if there are limitations in how P4 permits to describe some subset
of wire-speed flow/packet processing tasks and, if this is the case, how to extend P4 capabilities – or
identify novel approaches – to cover such gaps. It is a fact that P4 was initially devised with “only” packet-
level processing tasks in mind, i.e. processing tasks which take as input a given packet and process it (and
forward it) on the basis of information associated with the packet itself (e.g. packet structure). Stateful pro-
cessing was thus initially restricted to “packet-level states” (e.g. states specified while parsing an individual
packet), opposed to “flow-level states”, i.e. states which persist (and which are updated) across subsequent
packets of the same flow. With version 1.0.2 [7], the P4 specification has made a further initial step in sup-
porting per-flow stateful processing by introducing registers defined as stateful memories, which can be
used in a more general way to keep state. However, these stateful constructs seem to be sort of a “side-patch”
to P4 (opposed to a native fundamental feature) whose support is mandated to the actual target platform.
Indeed, the P4 language does not natively provide means to address and fetch registries (or counters) or
means to associate registries with flows without incurring in access collisions4. Rather, as explicitly stated in

1 https://www.barefootnetworks.com/products/brief-tofino/

2 https://www.netronome.com/technology/p4/

3 https://www.netcope.com/en/products/netcopep4

4 The technical underlying problem is how to persistently associate a register to a flow. Without any dedicated primitive or data structure
providing such an association, most P4 algorithms circumvent such problem by exploiting an Hash-value generator, provided as P4
language primitive, which associates an integer value to any arbitrary bitstring (e.g. a flow name). Such an associated integer can be then

https://www.barefootnetworks.com/products/brief-tofino/
https://www.netronome.com/technology/p4/
https://www.netcope.com/en/products/netcopep4

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 15 of 80 04. Apr. 2018

the latest language specification [8], stateful constructs such as counters and meters are represented using
external objects and must be explicitly supported by the target and allocated at compilation-time through a
process called “instantiation”. To address such shortcomings, 5G-PICTURE is specifically focusing on innova-
tive abstractions for describing stateful flow processing, and on the design of the underlying architectures
devised to support such abstractions as will be discussed in section 3.3.

1.2 Optical Network Programmability

The optical network becomes more and more dynamic in its architecture and requires frequent network re-
configurations. Dynamic optical networks require all kinds of visibility into application data types, traffic flows,
and end-to-end connections [9]. In addition to the dynamic optical network, the optical network needs to adopt
programmability to address the very diverse and high bandwidth connectivity requirements of the 5G network.
Optical network programmability will be based on active and elastic technologies. In terms of active technolo-
gies, current commercially available solutions perform optical switching supporting wavelength switching granular-
ity. However, given the very diverse requirements of operational and end-user services in the context of 5G, there
is a need for new approaches, deploying more dynamic and flexible solutions to offer higher granularity at the sub-
wavelength level and more elasticity in the optical domain. In view of these new requirements, an elastic frame-
based WDM active solution in combination with a passive optical network (PON) is proposed. The active optical
network solution proposed by 5G-PICTURE is referred to as Time Shared Optical Network (TSON) [12] that pro-
vides variable sub-wavelength switching granularity and the ability to dynamically allocate optical bandwidth in an
elastic way, while low-cost point-to-point connections with limited flexibility (e.g. between the edge network and
remote cells) can be also supported through passive Dense Wavelength Division Multiplexing (DWDM) networks –
WDM Passive Optical Networks (WDM-PONs). The elastic optical network discussed in section 5.2 can be en-
abled by the adoption of a flexible channel grid and programmable transceivers [10][11]. This is especially
interesting in the context of supporting greatly varying transport services – both fronthaul (FH) and backhaul
(BH) – for the RAN in 5G networks. Furthermore, optimizing the utilization of the available optical bandwidth
can increase the optical capacity. Dynamic bandwidth provisioning helps to the overall network spectral effi-
ciency. To enable flexible grid elastic optical networks, two key technologies are required: (1) flexible grid
wavelength selective switches or spectrum selective switches which support high bandwidth granularity; (2)
elastic transponders with variable data rate (corresponding to the occupied optical spectrum) and adaptable
modulation format. 5G-PICTURE focuses on next-generation elastic optical networks to support 5G traffic
requirements including research on switching nodes with enhanced flexibility and software-programmable
transceivers that are integrated through a control plane in support of optical network programmability.

1.3 C-RAN programmability

The monolithic RAN programmability is mainly enabled by applying software-defined networking principles into
RAN, i.e. SD-RAN, for decoupling the control plane (CP) from the data plane processing. Several works dis-
cuss the level of centralization of CP functionalities. A fully centralized architecture is proposed in OpenRAN
[13] and SoftAir [14]. It will face the challenge of real-time control under the inherent delay between the cen-
tralized controller and distributed RANs. While the SoftRAN [15] architecture statically refactors the control
functions into centralized and distributed ones based on the time criticality and central view requirement, the
SoftMobile approach [16] further abstracts the CP in different network layers based on their functionalities to
form the network graphs, and performs control functionalities through the Application Programming Interface
(API). As for the data plane programmability and modularity, the OpenRadio [17] and PRAN [18] are pioneered
to decompose the overall processing into several functionalities that can be chained. The blueprint proposed
as RadioVisor in [19] aims to isolate the control channel messages, elementary resources like CPU and radio
resource to provide customized service for each slice. The FlexRAN platform [20] realizes an SD-RAN platform
and implements a custom RAN south-bound API through which programmable control logic can be enforced
with different levels of centralization, either by the controller or RAN agent.

Evolving from a monolithic RAN towards disaggregated modules, the Cloud RAN (C-RAN) vision [21] aims to
distribute the radio access network functions from a monolithic base station (BS) among distributed entities,

used to reference a register. However, this is a “patch” which may not satisfy the need of processing tasks which deploy several flow
states (in principle up to even one state per each active flow, with the number of flows possibly being in the order of millions!). In fact, P4
does not provide any native mean to handle hash collisions (which are exacerbated by the relatively small number of registers available
in the underlying hardware – hence the need to rely on small-domain hash digests). As such either the programmer develops her own
collision handling means, hence most likely losing the O(1) property of the pipelined processing and making its application infeasible at
wire-speed, or she needs to live with hash collisions which may severely impair the semantics of the developed flow processing task.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 16 of 80 04. Apr. 2018

i.e. radio unit (RU), distributed unit (DU), and centralized unit (CU) as mentioned in Deliverable D4.1 [22]. The
RAN functionalities are segmented based on the applied functional splits between entities, for instance the
split option 1 to option 8 surveyed by 3GPP [23]. Such function distribution enables the flexibility in the future
ultra-dense RAN deployment, i.e., densification at the remote RU level while centralize the corresponding DU
and CU in the cloud infrastructures. Further, C-RAN retains the benefits of centralization to enable a coordi-
nated and cooperative processing at both DU and CU levels. Nevertheless, the programmability of such C-
RAN vision is more challenging as the relation between CN, DU, and RU follows the 1:N:M manner, and thus
the remote network functions shall be controlled and managed centrally to properly maintain the end-to-end
RAN service. For instance, when applying real-time beamforming and combining operation at the DU in its
physical layer, the different FH transportation delay between a single DU to the corresponding RUs may impact
the perceived performance.

Further, the chaining of RAN functions among distributed entities shall meet the latency constraint inherent of
the underlying radio access technologies (RATs). For instance, in an LTE system of frequency division duplex-
ing (FDD) mode, the Hybrid Automatic Repeat Request (HARQ) round trip time is 8 millisecond, and the dead-
line shall be met in the two examples shown in Figure 1, with downlink and uplink direction, respectively. In
[24], the processing time of FFT, (de)modulation, and (de)coding among different virtualization technologies
like virtual machines (e.g., KVM) or containers (e.g., Docker) is measured and modelled based on the experi-
ments conducted in the OpenAirInterface (OAI) platform. Based on such modelling, several works aim to con-
duct the dynamic resource provisioning to enable C-RAN programmability. The authors of [25] provide an
algorithm to dynamically select active RUs and virtual machines to DUs for energy efficiency improvement. In
[26], the parallelization of centralized functions (i.e., DU/CU) is surveyed and the different schedulers for exe-
cuting jobs over available cores are provided.

Besides, in order to support multiple services in the RAN domain, the disaggregated RAN will be able to sup-
port the customized network function for each of the instantiated slices. For instance, a service may request a
hardware-based accelerator for the channel decoder and a dedicated radio resource scheduling to enable the
low-latency communications, whereas another service may only require certain level of performance guaran-
tee (i.e., good-put) without any customization (e.g., over-the-top providers). In this sense, such a chain can be
composed horizontally between aforementioned RAN entities (i.e., RU, DU and CU), and/or vertically when
customized control/data plane processing is required to create the slice tailored to the service requirements.

(a) DL HARQ timing.

(b) UL HARQ timing.

Figure 1: FDD LTE timing.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 17 of 80 04. Apr. 2018

Figure 2 shows the input/output forwarding path between CU, DU, and RU to compose the three slice-specific
user plane processing chain with 3GPP function splits, option 2 between CU and DU, and option 6 between
DU and RU. For slice 1, it first customizes the network functions of Service Data Adaptation Protocol (SDAP)
and Packet Data Convergence Protocol (PDCP) at CU, then also customizes the Radio Link Control (RLC)
and Medium Access Control (MAC) functions at DU, while utilizing the shared Physical (PHY) layer function at
RU. By contrast, slice 2 only customizes the PDCP and RLC at CU, and slice 3 utilizes all shared function
without customization. Such data plane forwarding can rely on the match-action abstraction following the SDN
principles to establish the input/output forwarding path between the shared and dedicated network functions
as mentioned in [27]. Note that forwarding plane is introduced here to compose the input and output data
stream for a flexible processing pipeline composition. To this end, the C-RAN will further evolve to provide a
multi-service environment towards the service-oriented RAN (SO-RAN) architecture.

Figure 2: User data plane forwarding path in disaggregated RAN.

Contrary to the traditional networks, where BBUs and analogue front ends are co-located, C-RAN has been
proposed as a progressive architecture with the notion of reducing the Capital Expenditure (CAPEX) and OP-
erational Expenditure (OPEX) as well as providing simple repair and maintenance, and easy system upgrades.
In C-RAN there is a centralized processing, whereby multiple BBUs are placed at a single centralized location.
This centralization helps to reduce power consumption and enables efficient use of hardware utilization with
the help of resource sharing and network function virtualization.

Most of the communication functionalities in the BBU pool are implemented either fully or partially in a virtual-
ized environment hosted over General Purpose Processors (GPPs) [29]. In this project, we are interested in
understanding the computational effort involved in carrying out ‘split baseband processing’ by evaluating which
baseband functionalities can be carried out with low cost GPPs and which require dedicated hardware such
as ASICs. In addition, we aim to study the potential gains of pooling the hardware resources at a centralized
location as opposed to the conventional approach of having dedicated hardware at each BS. The term split
based processing refers to the notion of splitting signal processing functionalities between the remote unit and
BBU, which lead to different functional splits.

It is very important to understand the CPU utilization of BBU to design efficient resource sharing and proper
allocation of appropriate schemes [29]. The total processing time will depend on various signal processing
functionalities such as modulation, demodulation, coding and decoding, FFT/IFFT, etc., and the computing
resources are spent and dependent mainly on these functionalities.

The CPU utilization is related with throughput of the access link and throughput itself will depend for example
on MCS scheme, number of PRBs used. In [29], the authors have shown the percentage of CPU utilization
can be approximated as a linear increasing function of the DL throughput as

CPU [%] = 𝑐1 ⋅ ∅ + 𝑐2,

where 𝑐1 and 𝑐2 are constants and ∅ is the throughput measured in Mbps. The values of these constants are
calculated in [29] assuming full centralization. However, their values will be different for the different functional
split being considered, and the choice of proper split depends on the specific requirement and use cases.
Furthermore, the choice of a proper model such as the linear model as in [29] or the nonlinear model as in [31]
should be thoroughly investigated and validated.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 18 of 80 04. Apr. 2018

The authors in [31] have provided a nonlinear model to calculate the computational resource effort in giga

operations per second (GOPS), 𝑃𝑢,𝑡 required to serve UE 𝑢 at time t

𝑃𝑢,𝑡 = (
30

50
𝐴𝑢,𝑡 +

10

50
𝐴𝑢,𝑡

2 +
20

50

𝑀𝑢,𝑡

6
𝐶𝑢,𝑡𝐿𝑢,𝑡) ⋅ 𝑅𝑢,𝑡,

where 𝐴 is the number of used antennas at BS, 𝑀 the modulation bits, 𝐶 the code rate, 𝐿 the number of spatial
MIMO layers, and 𝑅 the number of physical resource blocks (PRBs), each as allocated to UE 𝑢 at time 𝑡.

However, the choice of constants, functional split and nonlinear dependency needs to be validated with the
real software implementation. In [32], the authors have used more complex models for power modeling of the
host CPU for both uplink and downlink, where they provided complexity in GOPS for different components
such as digital pre-distortion, filtering, CPRI, OFDM, Frequency domain (FD) linear, FD non-linear, FEC. The
results presented in [32] are reported in Figure 4. Moreover, due to centralized processing and coordination,
the computational complexity involved in acquiring large size channel state information will increase signifi-
cantly. In [30], the authors have proposed novel approaches in order to reduce the computational complexity
in acquiring the channel state information.

Figure 3 shows an example plot of computational complexity dependency on downlink throughput with BS
equipped with eight antennas serving different number of users. As can be seen from this figure, the compu-
tational complexity increases linearly with the downlink throughput.

Figure 3: An exemplary plot of computational complexity in GOPS verses downlink throughput for

different user certain time 𝒕.

Figure 4: An exemplary plot showing computational complexity in GOPS in UL and DL for different
components of macro cell site.

0

200

400

600

800

1000

1200

DL UL

C
O

M
P

LE
X

IT
Y

 I
N

 G
O

P
S

Predistortion Filtering CPRI OFDM

FD linear FD non-linear FEC Host CPU

Components DL UL

Predistortion 160 0

Filtering 200 200

CPRI 360 360

OFDM 80 80

FD linear 30 60

FD non-linear 10 20

FEC 20 120

Host CPU 200 200

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 19 of 80 04. Apr. 2018

2 Description of Selected Platforms

The development of programmable network platforms requires the use of specific HW platforms as technology
target to actually implement and validate them. In this section we present the set of platforms that has been
selected by the different partner for deploying the programmable platform. Some of these HW platforms are
developed by the consortium members themselves and their functionalities are enhanced and/or exploited to
improve the programmability of the programmable network platforms. Other HW platforms have been selected
and acquired by the partners. Those platforms have been chosen not only to develop the partner specific
programmability functionalities but also bearing in mind the integration (if applicable, depending on the use
case they are intended to contribute to) of the work done by different partners. For example, most of the FPGA
based development board will use the same FPGA manufacturer (Xilinx) and some of them will exploit the
same Xilinx IP ecosystem (based on the AXI-4 protocol as internal interconnection bus among different hard-
ware IPs). This can enable an easy integration between the specific hardware blocks developed by different
partners.

2.1 VC709 Platform

The VC709 is a FPGA platform developed by Xilinx for high-bandwidth and high-performance applications. In
5G-PICTURE is used by University of Bristol to implement the TSON node described in section 3.1.

The VC709 FPGA card is capable of 40 Gb/s using Xilinx Virtex-7 FPGAs. The card can be installed in a test
server into a PCIe slot to enable communication between the server and card. The VC709 has a FPGA Mez-
zanine Card (FMC) connector that allows to extend the capability of the bandwidth of the system. Figure 5 is
a photo that shows the VC709 card with a FMC card having four 10G SFP+ ports. Therefore, the VC709 card
in Figure 5 can increase the total bandwidth from 40G to 80G. Also, we can integrate the VC709 with a FMC
card supporting 40G QSFP+ ports. In this case, the four 10G SFP+ data stream can be aggregated in 40G
data stream in the FPGA. The aggregated data stream is forwarded into the 40G QSFP+ port on the FMC
card. The programmable hardware platform allows developers to implement high performance network func-
tion in FPGA such as switch, router, and NIC.

The main features of the VC709 card are similar to an Open Source Hardware platform named NetFPGA-
SUME. Therefore, the functions and libraries available from the Open Source Hardware platform can be ported
into the VC709 platform. Main features of the VC709 are listed below:

 Virtex-7 VX690T FPGA.

 Four-port 10G SFP+ for 40 Gb/s high performance networking applications.

 Memory interface with 2x 4GB DDR3 SODIMM Memory.

 Enabling serial connectivity with SMA pairs, and UART.

 Expand I/O with FMC interface.

 PCI Express Gen3 x8 supporting 8 Gb/s/Lane.

Figure 5: VC709 with 4x 10G SFP+ FMC card.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 20 of 80 04. Apr. 2018

Figure 6: A block diagram of server test machine with the FPGA platform and the FMC card.

In Figure 6 a block diagram of a test server machine equipped with the VC709 FPGA platform incorporating
the FMC card is illustrated. In the server, a dual-port 10G NIC card is also installed to connect a SDN controller
to receive and send messages for the hardware configuration through the agent. The FPGA card in the test
server machine can be programmed with a binary containing programmable hardware functions. The interac-
tion between the FPGA card and the test server occurs through a register API as well as through a DMA
engine, using a kernel-space driver. While the DMA engine is exposed in the server OS as a network interface
that allows data-plane packet interception and injection, the register API is used to configure the hardware
modules implemented in FPGAs, for example to install new rules and policies for routing and forwarding in-
gress packets.

2.2 NetFPGA-SUME

The NetFPGA SUME is an FPGA-based PCI Express board with I/O capabilities for 10 and 100 Gb/s operation,
an x8 gen3 PCIe adapter card incorporating Xilinx’s Virtex-7 690T FPGA. It can be used as NIC, multiport
switch, firewall, test/measurement environment. CNIT is using the NetFPGA as target device for developing
the prototypes of the OPP (Open Packet Processor) and PMP (Packet Manipulator Processor) components.
The main characteristics of the device are listed below:

 FPGA Logic Xilinx Virtex-7 690T.

o 693,120 logic cells.

o 52,920 Kbit block RAM.

o Up to 10,888 Kbit distributed RAM.

o 30 GTH (up to 13.1Gb/s) Transceivers.

o 4x10-Gigabit Ethernet networking ports.

o Connector block to 4 external SFP+ ports.

 Memories

o Three parallel banks of 72 MBit QDRII+ memories working at 500 MHz.

o Two replaceable DDR3-SoDIMM modules, 933 MHz clock (1866 MT/s) for a total capacity of

8 GBytes.

 Third generation PCI Express interface, 8 Gb/s/lane, 8 lanes (x8).

 Expansion Interfaces:

o Fully compliant VITA-57 FMC HPC connector.

o Digilent Peripheral Module (PMOD) expansion connector.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 21 of 80 04. Apr. 2018

A Detailed description of the NetFPGA SUME is available here at the product webpage5.

2.3 Mellanox Spectrum™ Ethernet Switch

Mellanox will use their Mellanox Spectrum™ Ethernet Switch as target platform for the development of the P4
compiler for programmable dataplanes. The development of a P4 compiler for this platform will enable end-
user to fully exploit the high programmability of such device with very limited design effort and without the need
for Mellanox to expose the microarchitectural details of the ASIC switch chip.

The Mellanox Spectrum™ is a 10/25/40/50 and 100Gb/s Ethernet Switch solutions fully programmable and
SDN-Optimized that enable efficient data centres fabrics. It provides the most efficient performing server and
storage system Ethernet interconnect solution for Enterprise Data Centres, Cloud Computing, Web 2.0, Data
Analytics, Deep Learning, High-Performance, and embedded environments. Spectrum, the eighth generation
of switching IC family from Mellanox, delivers leading Ethernet performance, efficiency and throughput, low-
latency and scalability and programmability for data centre Ethernet networks by integrating advanced net-
working functionality for Ethernet fabrics. The main characteristics of the device are listed below:

 Industry leading, true cut through latency.

 Forwarding database sized for hyperscale.

 Optimized for SDN.

 Dynamically shared, flexible packet buffering.

 Flexible and programmable pipeline.

 Comprehensive overlay and tunneling support including VXLAN, NVGRE, Geneve and MPLS.

 Data Center Bridging (DCB) supporting PFC, DCBX, ETS protocols.

 Advanced load balancing.

 Advanced congestion management, Explicit Congestion Notification (ECN).

 Advanced PTP support.

 Flexible Port Configurations:

o Up to 32 40/56/100GbE Ports.

o Up to 64 10/20/25/50GbE Ports.

A detailed description of the Mellanox Spectrum™ Ethernet Switch is available at the product page6.

2.4 Xilinx Zynq UltraScale+ MPSoC ZCU102 (OAI target)

University of Thessaly (UTH) is involved in building a new target platform for OAI towards optimizing its oper-
ation and allowing the implementation for achieving higher bandwidths than those currently supported. Alt-
hough OAI is a pure software implementation relying only on GPPs for its operation, yet some computational
intensive operations taking place in the physical layer (PHY) or higher (e.g. PDCP) of the platform may signif-
icantly consume more time, and thus prevent the platform from reach new levels of performance. Examples
of such functions are the turbo decoding procedure in PHY, or the PDCP encryption/decryption at the PDCP
layer. To this aim, UTH team is investigating several candidate solutions in order to maximize the performance
of the platform. One of these is the integration of the Xilinx Zynq UltraScale+ MPSoC ZCU102 platform with
the host platform running the OAI service, and the offloading of specific intensive tasks to the FPGA. In the
following paragraphs, we detail the platform characteristics.

The Zynq UltraScale+ MPSoC device is equipped with a quad-core ARM Cortex-A53 and a dual-core Cortex-
R5 real-time processors. A Mali-400 MP2 graphics processing unit (GPU) based on Xilinx's 16nm FinFET+
programmable logic fabric is also available. The ZCU102 supports all major peripherals and interfaces enabling
development for a wide range of applications.

5 https://reference.digilentinc.com/_media/sume:netfpga-sume_rm.pdf

6 http://www.mellanox.com/related-docs/prod_silicon/PB_Spectrum_Switch.pdf

https://reference.digilentinc.com/_media/sume:netfpga-sume_rm.pdf
http://www.mellanox.com/related-docs/prod_silicon/PB_Spectrum_Switch.pdf

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 22 of 80 04. Apr. 2018

Figure 7: Xilinx Zynq ZCU102 interfaces.

Table 1 summarizes some of the key interfaces and features of the platform.

Table 1: Key characteristics of the Xilinx Zynq ZCU102.

Interfaces Characteristics

Memory

 PS 4GB DDR4 64-bit SODIMM w/ ECC

 PL 512MB DDR4 component memory ([256 Mb x 16] devices) at 1200MHz / 2400

Mb/s DDR

 8KB IIC EEPROM

 Dual 64MB Quad SPI flash

 SD card slot

Control and IO

 6x Directional Push Buttons (5x PL, 1x PS)

 DIP switches (8x PL)

 PMBUS & System Controller MSP430 for power, clocks, and I2C bus switching

 USB2/3 (MIO ULPI and 1 GTR)

Expansion
Connectors

 2x FMC-HPC connectors (16 GTH Transceivers, 64 differential user defined sig-

nals)

 2x PMOD headers

 IIC

Communication
& Networking

 RGMII communications at 10, 100, or 1000 Mb/s. Serial GMII interface-supports a

1 Gb/s SGMII interface

 4x SFP+ cage

 SMA GTH support (4x SMA Tx/Rx connectors)

 UART To USB bridge

 RJ45 Ethernet connector

 SATA (1 x GTR)

 PCIe Gen2x4 Root Port

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 23 of 80 04. Apr. 2018

Clocks

 Programmable clocks

 System clocks, user clocks, jitter attenuated clocks

 2x SMA MGT input clocks

2.5 Typhoon Platform

Blu Wireless Technology (BWT) will use its Typhoon Platform for data plane programmability investigations in
WP3, for the investigation of virtualized synchronisation functions in WP4, as well as for the implementation of
millimetre-wave (mmWave) testbed and demo setups in WP6, especially railway demonstrations. More spe-
cifically, BWT will use its DN101LC gigabit communication module, which is a member of the Typhoon family
of highly programmable wireless communications modules for multi-gigabit prototype 5G infrastructure links.

The BWT Typhoon mmWave platform (made available in 2017) comprises two dual IEEE 802.11ad wireless
mmWave modems interconnected by a network processor (NPU). It is based on the RWM6050 chip from IDT
Systems Inc., which includes patented silicon IP from BWT. The referred chip, in turn, consists in a single-chip
baseband solution for mmWave wireless infrastructure applications, which integrates a dual MAC, dual PHY
and analogue baseband front-end functions. The Typhoon module allows evaluation of the RWM6050 and is
able to deliver up to 4 Gb/s per link at ranges of 400 metres.

The Blu Wireless IP that is included within the Typhoon module consists in the patented HYDRA technology
(Hybrid Defined Radio Architecture). A key feature of the HYDRA is that both the PHY and the MAC layer of
its IEEE 802.11ad modem combine optimized hardware accelerators with programmable parallel processing.
Namely both MAC and PHY are software-defined, which allows the performance of novel mmWave wireless
algorithms to be explored and continuously tailored in the context of advanced research platforms. The HYDRA
PHY DSP Modem is implemented as a SoC in 28nm LP CMOS and includes 2.6 Gs/s IQ ADC/DAC data
convertors to support processing of 2 GHz wide radio channels as specified by the 802.11ad standard.

The Typhoon utilises the latest integrated electronic beam steering phased array antenna, RF and baseband
technologies and is available in various configurations, including single, dual and quad RF, with or without
NPU support and in either the default unlicensed 60GHz standard or other licensed bands. Figure 8 presents
the block diagram specifically of the DN101LC module that will be used in 5G-PICTURE. The RF module
consists in a 60 GHz radio transceiver with phased array antenna comprising separate active Rx and Tx an-
tenna arrays with 12 elements each, gain of 16 dBi and Tx EIRP of over +26 dBmi. Note that the module can
operate with an external host and a single mmWave radio-frequency integrated circuit (RFIC) device. An option
to support larger antenna sizes to achieve increased gain is also possible.

Lastly, the DN101LC module features an integrated Cavium CN8130 NPU, where the standard Linux network
stack is augmented with OpenFlow and Network Configuration Protocol (NETCONF) support. Furthermore, it
allows remote software upgrades such as the introduction of customized APIs. This provides a suitable envi-
ronment for experimentation and investigations on data plane programmability in 5G-PICTURE.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 24 of 80 04. Apr. 2018

Figure 8: BWT Typhoon block diagram.

Figure 9: ADVA FSP 150 ProVMe series.

2.6 ProVMe

The FSP 150 ProVMe (Figure 9) is an existing ADVA product series and open platform for Virtual Network
function (VNF) hosting and true multi-layer business service demarcation. Besides an integrated OpenStack7-
based virtualization layer, it already offers full direct SDN-enabled configurability via standardized REST,
NETCONF/YANG, and OpenFlow interfaces, and general Carrier Grade Ethernet Switch features like:

 Layer 2 service classification according to IEEE 802.1p, 802.1Q and IP-TOS/DSCP.

 Syncronisation services according to ITU-T G.8261/G.8262/G.8264 SyncE, G.8265.1/G.8275.1 PTP,

and IEEE 1588v2.

 End-to-end data encryption and IEEE 802.1X authentication services.

In addition, it is well integrated with ADVA’s FSP Network Manager Software8, which can further act as stand-
ardized SDN mediation layer. Full ProVMe platform specifications are listed on its ADVA product page9.

7 https://www.openstack.org

8 https://www.advaoptical.com/en/products/automated-network-management/fsp-network-manager

9 https://www.advaoptical.com/en/products/packet-edge-and-aggregation/edge-computing/fsp-150-provme-series

https://www.openstack.org/
https://www.advaoptical.com/en/products/automated-network-management/fsp-network-manager
https://www.advaoptical.com/en/products/packet-edge-and-aggregation/edge-computing/fsp-150-provme-series

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 25 of 80 04. Apr. 2018

ADVA’s ProVMe development team is currently evaluating plans for adding P4-programmable FPGA re-
sources to the platform for future product variants. Together with the already existing NFV and Carrier Grade
Ethernet Switch features, and standardized SDN integration interfaces, this offers an opportunity to collaborate
with the product development team for providing a completely open and fully featured white-box edge platform
for the 5G-PICTURE network.

2.7 Gateworks Ventana

For implementing and testing 5G-PICTURE’s Sub-5 GHz wireless transport node, i2CAT uses the Gateworks
(GW) Ventana 5410 Single-Board Computer (SBC). The chosen platform shows the following main character-
istics:

 FreescaleTM i.MX6 1GHz Quad Core ARM ® CortexTM-A9 Automotive Grade Processor.

 1Gbyte DDR3-1066 SDRAM Memory and 256 Mbytes System Flash Memory.

 Six High-Power Gen 2 Mini-PCIe Sockets.

 Support for SIM Socket, mSATA Disk Drive, and USB Signaling.

 Two GbE Ethernet Ports.

 8 to 60VDC Input Voltage Range.

 -40C to +85C Operating Temperature.

This ARMv7-based SBC is of particular interest because of the number of PCI-E slots, allowing the installation
of up to six NICs. This brings the flexibility to instantiate multiple wireless access and/or backhaul interfaces
with a single board. The SBC runs Linux (Ubuntu 16.4 LTS) with a 4.9.65 kernel that has been modified for
better support of IEEE 802.11 features.

Figure 10: Gateworks Ventana platform equipped with 3 wireless NICs and omnidirectional antennas.

Figure 10 shows a prototype node for on-street or indoor deployment, featuring a GW Ventana 5410 equipped
with 2x IEEE 802.11ac and 1x IEEE 802.11n NICs. In this example, the IEEE 802.11n is used to provide
wireless access (Access Point mode), whereas the IEEE 802.11ac cards are used to create wireless backhaul
links with other nodes thereby forming a mesh network. In outdoor deployments, the use of directive antennas
for backhaul connections allows to cover wider ranges and to maintain a high throughput even with a large
separation between nodes.

2.8 digiBackBoard

The digiBackBoard is a universal platform for high-data rate communication systems based on a high-perfor-
mance FPGA-ARM-SoC, GS/s data converters and Gigabit Ethernet transceivers. IHP plans to use the digi-
BackBoard both as a wireless communication node and to provide a multi-PHY/multi-protocol interface among
different technologies.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 26 of 80 04. Apr. 2018

2.8.1 digiBackBoard as a wireless communications node

The digiBackBoard is especially suited for demonstration and evaluation of millimetre wave (mmWave) signal
processing algorithms and for small-footprint prototypes. Nearly all kinds of Analogue Front-End (AFE) mod-
ules can be connected to the universal analogue IQ signal interface. A MATLAB-based software framework
supports a fast start with a hardware-in-the-loop (HIL) setup.

Figure 11: IHP’s digiBackBoard.

The main components and features of the digiBackBoard are:

 High-performance Xilinx Zynq-7045 FPGA (SoC) with embedded dual-core ARM processor

 Dual 2.16 GSps 10 bit ADC, dual 2.16 GSps 14 bit DAC

 Differential IQ-Interface for AFE connection

 Auxillary 180 MSps 8-bit ADC (for RSSI)

 1 GB DDR3-RAM

 4 Gigabit-Ethernet-Ports

 76 digital GPIOs + 4 GTX transceivers externally available

 Serial (RS232) and JTAG interface through USB

 Prepared for support of SyncE and IEEE 1588v2

 AFE output power supply with configurable voltage

 Single 12 V power supply

 Boot from Micro-SD card or on-board SPI-Flash

 Matlab framework, GUI and firmware example design for SDR application available

 Ready-for-Linux (e.g. Peta-Linux)

 100 x 160 mm footprint

IHP plans use the digiBackBoard for:

 Implement point-to-multipoint (P2MP) MAC processor (HW/SW codesign): A preliminary concept is

already available and is included in Section 3.6 of this deliverable.

 Wireless synchronization, related as well to the work to be done in WP4.

 Upgrading of baseband to 802.11ad, having increased data rates for both OFDM and Single-Carrier

(SC).

 Investigate the adoption of OpenCL abstractions to enhance the programmability of the digiBack-

Board.

2.8.2 digiBackBoard as an interface across technologies

The digiBackBoard will be used to provide fast Multi-PHY and Multi-Protocol interfaces (MPIs) based on state
of the art FPGA allowing great flexibility to mix and match a variety of protocols and technology solutions, e.g.
PCIe 4.0, USB 3.1, Ethernet 100G, 40G, 10G, and 1G, SFI/XFI, SATA, Q/SGMII and CPRI.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 27 of 80 04. Apr. 2018

The objective is two-fold:

 enable the support to heterogeneous networks

 enable mapping of traffic across infrastructure domains

As an example the digiBackBoard could be deployed at the edge nodes to support a variety of multi-proto-
col/PHY interfaces. This allow mapping very different traffic streams coming from the wireless access domain
to optical frames/streams, capitalising on a number of HW programmable building blocks including OPP, BVTs
and exploiting the benefits of FPGA based HW. Figure 12 shows the integration of OPP and BVTs (two differ-
ent programmable blocks that will be described in section 3), which can be achieved by using the MPI.

Figure 12: Possible use of the MPI to interconnect different programmable blocks.

2.9 Xilinx VCU-110

This section presents an overview of the VCU110 evaluation platform, shown in Figure 13, which is used as
target for TransPacket’s FUSION 100G IP Core R1.6. TransPacket plan to use this platform for evaluation of
low latency scheduling, shaping and priority mechanisms for Ethernet Time Sensitive Networks (TSN).

2.9.1 Evaluation platform

The VCU110 evaluation board is documented in the Xilinx product page10. It is equipped with a Virtex Ul-
trascale FPGA and four CFP4 optical modules applicable for 100 Gb/s Ethernet. Furthermore, two FMC con-
nectors can be found on the board, applicable for connecting FMC boards offering 10 Gb/s interfaces.

2.9.2 Faster technology SFP+ interface board FM-S18

Optical 10G Ethernet interfaces are provided by a FM-S18 Octal SFP/SFP+ transceiver FMC board (Figure
14). The FMC board is documented at the Faster Technology product page11.

Since the VCU110 board only supports a subset of signals at a FMC high pin count connector, control of the
SFP+ modules is not possible. The FM-S18 board is therefore modified by connecting TX_DISABLE to ground.
Monitoring of RX_LOS from the SFP+ modules are not possible due to limited number of signals in the con-
nector.

10 https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0046-vcu110-development-kit-hub.html

11 http://www.fastertechnology.com/products/fmc/fm-s18.html

https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0046-vcu110-development-kit-hub.html
http://www.fastertechnology.com/products/fmc/fm-s18.html

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 28 of 80 04. Apr. 2018

- (CFP4 #3)

- CFP4 #2 ce

- (CFP4 #1)

- (CFP4 #0)

FMC HPC0FMC HPC1

- (CFP4 #3)

- CFP4 #2 ce

- (CFP4 #1)

- (CFP4 #0)

FMC HPC0FMC HPC1

- USB JTAG Interface

- Dual USB-to-UART Bridge

Figure 13: VCU110 prototype board.

Figure 14: FM-S18.

2.9.3 Block diagram

The block diagram in Figure 15 shows the layout of the evaluation platform. Support for configuration/control
of the 100G IP Cores is provided by MicroBlaze SW. Connections between VCU110 board and the Lab-PC is
carried out by an individual USB-UART connection to the board.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 29 of 80 04. Apr. 2018

Lab PC

USB
Serial

FM
S18

H100 IP Core
R1.6

1x 1G

1x 100G

5x 10G

uBlaze

1
0

G
 G

lu
e

 L
o

g
ic

CFP4
#2

1
0

0G
 G

lu
e

Lo
g

ic

VCU110

xe[4:0]

ge

HPC0

ce

FM
S18

1
G

 G
lu

e
 L

o
gi

c

HPC1

Figure 15: 100G IP Core evaluation platform.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 30 of 80 04. Apr. 2018

2.10 IAF 5G Development Platform (F-PU 5G)

The F-PU 5G by IAF12 GmbH (Institute for applied radio system technology) is an FPGA evaluation platform
specifically targeted at SDN+NFV use cases. Just like the Xilinx VCU110 board, it is based on a Xilinx Virtex
Ultrascale FPGA, but features extension slots for up to two 8-Core Intel Xeon processor modules.

Figure 16: IAF 5G Development Platform.

Further details are given on the according Xilinx partner product page13 and in the block diagram in Figure 17.

In addition to the use of the existing ADVA ProVMe product line, (described in section 2.6) as integrated VNF
hosting and 5G-PICTURE network support solution and ADVA’s already ongoing evaluation of the Xilinx
VCU110 board (described in section 2.9) as pure FPGA VNF hosting platform, ADVA is considering the eval-
uation of the F-PU 5G as an alternative, standalone NFV platform. The advantage over pure FPGA platforms
like VCU110 is the ability to flexibly distribute and combine VNFs across integrated FPGA and CPU processing
resources. The integrated CPUs further avoid the need for an external PC running management software for
user-programmability, VNF control and deployment, as well as SDN controller integration. Also, development
of VNFs and management software components can be performed directly on the board.

12 http://www.iaf-bs.de/en/

13 https://www.xilinx.com/products/boards-and-kits/1-8dyf-1506.html

http://www.iaf-bs.de/en/
https://www.xilinx.com/products/boards-and-kits/1-8dyf-1506.html

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 31 of 80 04. Apr. 2018

F-PU: FPGA based Digital Processing Unit

FPGA
Xilinx

 Virtex Ultrascale

XCVU080-2 / XCKU115-2

(Housing A2104)

DDR4 Memory

8 GB

100G Eth
(only XCVU version)

 4 x 25 Gbps

DSPLL SI5345

Ref CLK

48 MHz

COMExpress #1

 Type 6 Connector

 PCIe x 8

 4 x 25 Gbps

1Gb Eth.

UART, SPI

DC/DC Power Generation

 8 x 16 Gbps µBlaze

Embedded µC

Flash

memory
DDR RAM

REF_IN

1 Gb Eth.

FMC HPC #2
FPGA Mezzanine

Card Slot

 8 x 16 Gbps

FMC HPC #1
FPGA Mezzanine

Card Slot

COMExpress #2

 Type 6 Connector

UART / SPI

2 x USB 3.0

Plug in modules:

Xeon D-1500 8 core

‚Kontron

COMe-bBD6'

 PCIe x 8Plug in modules:

Xeon D-1500 8 core

‚Kontron

COMe-bBD6'

SFP+

100G Eth
(only XCVU version)

mSATA

 slot

PCIe x 8 slot

SFP+

SFP+(10GE)

1 Gb Eth.

PCIe x 8 slot

SFP+(10GE)

SATA

 conn.

2 x USB 3.0

SATA

 conn.

Plug in modules:

 8 x SFP+

 2 x 2 RF module

Plug in modules:

 8 x SFP+

 2 x 2 RF module

UART

SPI

Flash

SPI

Flash

REF_OUT

Figure 17: F-PU 5G block diagram.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 32 of 80 04. Apr. 2018

3 Functional Definition of Programmable Platforms

This section reports the progress of Task 3.1. The main goal of this task is to emerge with domain-specific
processors which pre-implement (very efficiently, e.g. in HW) functional primitives reusable by multiple network
functions. These primitives are thus decoupled from the programmatic ways of combining them to provide
those network functions. Different types of platforms will be used/developed during the project: i) for the BH,
the platforms will provide a highly programmable stateful dataplane with latency and throughput performances
able to sustain the need of the 5G network; ii) These platforms will also exploit the integration of optical (Elastic
and Passive) network solutions; iii) In the FH, reconfigurable hardware platforms will be used to provide both
SDN-based programmability and efficient allocation of the processing tasks with flexible functional splitting
between the radio units and the base station (BS).

3.1 SDN agent and controller development for control- and data-plane in Optical transport in support

of joint FH/BH

The SDN architecture employs the concept of controllers and agents for network programmability. 5G networks
adopt the SDN concepts in both FH and BH for programmability purposes. The SDN agent is responsible for
carrying out the command of the controller and notifying the controller regarding events that are specified by
the controller.

In 5G-PICTURE, the SDN agent is implemented at the RUs and BBUs to enable communication with the SDN
controller. In the project, the TSON node supporting FH services is implemented on the VC709 FPGA platform
that is developed by Xilinx. The platform has 4 10G SFP+ ports. As a prototype platform for the testbed, one
of the 10G ports or the NIC card described in Figure 5 is used as a control channel to communicate with the
SDN controller through the SDN agent. The 10G port used for the control channel can also be connected to a
1G channel through a media converter. The rest of the available ports on the platform are used to support
data-plane functions controlled by the SDN controller. For example, the number of time slots on the data-plane
for data transmission will be configured and controlled by the agent according to a message sent by the SDN
controller. Also, the buffers inside the FPGA enable the assignment of timeslots to the output ports based on
different matching fields such as: destination address, source address, and VLAN ID.

In 5G-PICTURE, the agent is implemented in C and Python which constructs devices configuration messages
through a predefined Ethernet frame. The module implemented in FPGA parses incoming packets as a packet
switch, which implies that it could forward traffic according to their ingress port, L2, L3 or other layer features.
This module implemented in FPGA not only schedules packets in Time Division Multiplexing (TDM) fashion
but also supports allocation of TDM slots on different wavelengths in a flexible manner. From a resource allo-
cation perspective, a flow table (instead of a cross connection matrix) with flow entries including match field
and its associated actions (e.g., forwarded in which timeslot) is maintained in control plane to indicate the
existing flow forwarding rules and resource availability.

Figure 18: Configuration for the development of an agent and controller for SDN.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 33 of 80 04. Apr. 2018

Figure 19: Network connection for SDN enabled RU and BBU.

3.2 Architectural definition of programmable C-RAN

5G wireless access solutions will support a heterogeneous connectivity of integrated air interfaces shown in
Figure 19. These will coexist with legacy wireless access, LTE and Wi-Fi technologies, to allow broader cov-
erage and availability, and higher network density and increased mobility. To further enhance spectral effi-
ciency and throughput, small cells can be deployed, either adopting the traditional Distributed Radio Access
Network (D-RAN) paradigm, where Baseband Units (BBUs) and radio units are co-located, or the concept of
Cloud Radio Access Network (C-RAN). The remote units (RUs) in C-RAN are connected to the Central Unit
(CU) – where the BBU pool is located – and are interconnected through high bandwidth transport links known
as FH. Through its pooling and coordination gains, C-RAN can address the limitations of D-RAN, such as
increased capital and operational costs, as well as limited scalability and flexibility. However, C-RAN (depend-
ing on the wireless technology adopted) may require tremendous transport bandwidth and impose strict latency
and synchronisation constraints. Optical network solutions can play a key role offering the advanced transport
capabilities. To limit the stringent transport requirements of the C-RAN approach alternative architectures have
been proposed. These alternative architectures rely on concepts such as the flexible split options. The intro-
duction of flexible splits allows dividing processing functions between the CU and the RUs. Through this ap-
proach, a set of processing functions can be performed at the RUs deploying local dedicated compute re-
sources and the remaining functions can be performed centrally, through shared compute resources.

5G-PICTURE will design and develop a converged infrastructure for FH and BH, integrating a variety of ad-
vanced wireless access and radio network technologies for transport through novel optical network solutions.
5G-PICTURE will adopt hybrid optical network solutions deploying advanced passive and high capacity elastic
optical networks exploiting the benefits of packet networks to address the limitations of the C-RAN approaches.
In the solutions, a novel architecture exploiting flexible functional splits is designed and developed to evaluate
not only configurability and programmability but also performance in terms of latency and data throughput. The
optimal “split” in C-RAN will be flexibly decided, based on a number of factors such as the transport network
and the service characteristics, yielding significant resource and energy efficiency benefits. The introduction
of these splits allows to divide the processing functions between the CU and the remaining BBU processing
functions, through shared compute resources.

The required flexibility can be provided in programmable digital hardware, such as FPGA, to support flexible
reconfiguration of hardware-accelerated (HWA) and software-realized BBU functions, which can be partitioned
at different levels. The shared “BBU pool of resources” required to support such activities mitigates the needs
of owning hardware as it can be hosted either at publicly available micro Data Centers (mDCs) – referred to
as Multi-access Edge Computing (MEC) – or at remote regional and central large-scale DCs. This alternative
programmable C-RAN approach introduces the need to develop new technology solutions able to achieve
increased performance and high levels of power efficiency, flexibility and density. 5G-PICTURE proposes the
concept of “disaggregation of resources” as a key enabler in this direction.

Disaggregation relies on physically decoupling components and mounting them on remote locations, instead
of tightly coupling all components in a conventional integrated system. Disaggregation facilitates independence
across technologies and subsystems, offering increased granularity in the control of resources and the way
they are allocated and provisioned. Apart from increased flexibility and programmability, due to its modular

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 34 of 80 04. Apr. 2018

approach, dissagregation offers enhanced scalability, upgradability and sustainability potential that are partic-
ularly relevant to 5G environments supporting enormous and continuously growing number of end-user de-
vices and services. To exploit the concept of disaggregation in the programmable C-RAN environments, it
needs i) hardware programmability: allowing HW repurposing to enable dynamic on demand sharing of re-
sources and ii) network softwarisation: enabling migration from the traditional closed networking model, focus-
ing on network entities, to an open reference platform instantiating a variety of network functions. Such novel
networking approaches can facilitate increased functionality and flexibility infrastructures, offering simplified
management and advanced capabilities including slicing and virtualisation that allow the disaggregated re-
source pool to be shared and accessed remotely.

To exploit the concept of disaggregation in the programmable C-RAN architecture, 5G-PICTURE also designs
and develops the “Dis-Aggregated RAN” (DA-RAN) architecture deploying the FPGA platforms described in
section 2. In 5G-PICTURE, DA-RAN will adopt the notion of “disaggregation” of HW and SW components
across the wireless, optical and compute/storage domains in FH. In the DA-RAN architecture, resource dis-
aggregation allows to decouple HW and SW components creating a common pool of resources that can be
independently selected and allocated on demand. The HW and SW components described in the following
sections form the basic set of building blocks that, in principle, can be independently combined to compose
infrastructure services required.

3.3 Open Packet Processor (OPP)

CNIT is developing a programmable dataplane that will be able to execute several stateful network functions
(NFs) without the intervention of the control plane. The OPP dataplane will be used inside the 5G-PICTURE
project to enhance the programmability of the transport nodes as detailed in deliverable D4.1. The hardware
constraints in terms of memory amount and number of operations that can be executed for each packet that
must be processed by the network, pose severe limitations to the programmable dataplane architecture. These
limitations are in contrast to the requirements in terms of flexibility of the NFs. Luckily, there is some recent
research work showing that the main hardware elements composing the dataplane could provide enough flex-
ibility and programmability to realize several network functionalities directly in the dataplane [33]. Recently,
programmable dataplanes [35] emerged as ideal target devices to implement these complex NFs. These pro-
grammable dataplanes can be configured using specific programming languages (such as P4 or POF). How-
ever, the current scenario presents several limitations that prevent the nowadays-available programmable
dataplanes to act directly for stateful functionalities. Here we recall the major limitations that will be addressed
during this research activity in order to provide an efficient stateful network function (NF) engine that we named
Open Packet Processor (OPP). The envisioned architecture of OPP is presented in Figure 20. This architecture
is conceived to supersede the above mentioned limitations of programmable dataplane retaining the ability to
sustain wire speed packet processing. Some of the elements of the architecture are slightly modified versions
of the same elements used in the original OPP model [36], while others will be developed during this research
project.

Figure 20: Architecture of OPP.

The blocks presented in Figure 20 performs the following functionalities:

 Lookup extractor: it extracts the packet header fields used to define a flow.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 35 of 80 04. Apr. 2018

 Flow context table: this memory is used to store/retrieve the stateful context associated to each flow.
The characteristics of the Flow context table has been extensively upgraded during this project and
as reported in section 3.3.1.

 Global values: global variables represent the internal state of the network node. The global values
can provide different type of information depending on the type of network node and of the specific
implementation, (e.g. it could provide the queue occupancy of an input port, the link utilization but also
the power consumption of the device if the hardware is able to provide this metric).

 Condition Evaluation Block: the per-flow registers (stored in the flow-context table) and global vari-
ables are evaluated by the Condition Evaluation Block. The results of the evaluation are given as input
to the Finite State Machine (FSM) table that execute a FSM algorithm.

 Internal Microprocessor: this soft core processor is used to perform several tasks that we collect
under the name of “aggregation tasks and lazy evaluation functions”. These tasks are under develop-
ment inside the 5G-PICTURE project and the details about these tasks are reported in section 3.3.2.

 Calendar: this block provides fine grained timer management. This block has been completely devel-
oped inside the 5G-PICTURE project activities and the details of the design are reported in section
3.3.3.

 Packet Manipulator Processor (PMP): the PMP is a Very Long Instruction word (VLIW) based pro-
cessor tailored to perform packet manipulation tasks such as header encapsulation/decapsulation,
CRC/checksum re-computations and other functionalities related to packet processing. The initial idea
of the PMP together with a software simulator based on a Reduced Instruction Set Computer (RISC)
architecture has been presented in [40]. CNIT is developing the hardware implementation of the PMP
inside the WP3 activities of 5G-PICTURE. Details about this block are reported in section 3.3.4.

3.3.1 Per-flow stateful model

One of the bigger limitations in the current programmable dataplane is the absence of a clear per-flow stateful
model for storing directly in the dataplane the information gathered on the different flows under analysis. There
are two types of stateful elements in programmable dataplanes: tables and counters/registers. Nowadays ta-
bles can be controller only from the control plane (insertion/update/delete operation can be executed only
using specific control-plane commands). Registers/counters array can be updated directly in the dataplane,
but it is hard to map a row of the array to a specific flow. The currently available solutions use hash functions
to provide the mapping between the flow and the array elements, but there is no automatic collision resolution
when multiple flows hit the same array element. The mapping between the flow and the array elements can
be also realized using a matching table, but the use of this approach prevent the dataplane update of the table
(e.g. when a new flow arrive or a flow expire). Even if some workarounds to update tables can be realized (see
e.g. [33]), they are quite complex to realize, requires a significant amount of resources and are focused on a
specific application. We solve these issues providing some specific tables (that we will call flow-context table
in Figure 20) that can be updatable directly in the dataplane. The block called lookup extractor in Figure 20
extract the flow-key using a programmable subset the header fields coming from the packets. This flow key is
used to retrieve from the table the state and the registers associated each flow. The preliminary hardware
feasibility of these tables has been discussed in [36]. The improvements with respect the preliminary proof-of-
concept are discussed below.

Large Flow Context Tables: The efficiency of the hash tables developed in [36] was limited by the use of d-
left hash tables for hash collision resolution. Even if this collision resolution strategy is easily implementable in
hardware it can provide a maximum load factor before failing that is in the range 25-50% depending on the
specific configuration (number of tables and number of cell in each bucket). In order to increase the maximum
load factor we developed a pure hardware cuckoo hash tables [37], which support higher load factors, therefore
improving on SRAM usage efficiency. However, an entry insertion in a cuckoo hash table may actually need
multiple operations when there is a hash collision. This makes insertion times variable and potentially long for
a loaded table, severely impacting performance. While current designs usually perform entry insertion and
collision handling in the device’s control plane [1], we need to handle such complex logic in the data plane,
while guaranteeing quick and constant insertion times. Second, a flow-oriented memory addressing implies
that a given memory location is accessed only when a given flow’s packet is processed. Therefore, a given
memory location is accessed at a rate that may be just a fraction of the overall packet processing rate (i.e.,
one access per cycle). This could enable read/modify/write operations that span multiple clock cycles, there-
fore increasing device’s operations potential complexity and flexibility. For example, one could implement more
complex ALU’s operations or, as in our case, implement an FSM execution logic. However, this introduces a

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 36 of 80 04. Apr. 2018

state consistency problem, since a memory location access times may vary depending on the traffic pattern,
potentially leading to a concurrent read/write of the same memory location.

The Flow Context Tables store the state for the processed flows, i.e., state label and registers, and are in
principle similar to regular forwarding tables. However, unlike forwarding tables, the OPP uses the Flow Con-
text Table as a transactional memory, which is challenging because of the need to handle entry insertion at
line rate, even in presence of hash collisions. OPP solves the issue implementing the insertion logic completely
in hardware, and extending the hash table with a small stash memory to hold entries waiting for insertion. The
stash allows the OPP to hide the variable insertion time of a cuckoo hash, when properly dimensioned. In
particular, we implement a four-choices cuckoo hash table [38] that offers a 97% load factor, using a dual port
(read-after-write) SRAM to support two memory accesses in the same clock cycle, for concurrent read and
update operations. The table is coupled with a stash memory that can host 8 entries. Differently from a typical
cuckoo with stash, a new entry is always first inserted in the stash, which guarantees constant insertion time
(1 cycle). In parallel, the insertion logic moves entries from the stash to the hash table and operates as a
regular cuckoo+stash implementation. The insertion logic can execute an entry insertion/movement per cycle,
i.e., in about 6.4 ns in our implementation. Movements are required in case of hash collisions, since in such
case the cuckoo algorithm inserts a new entry in the occupied position and moves the old entry in a new
position. For a very loaded table the number of movements may grow 100x [38]. This rises a concern the stash
may become quickly full. However, in typical workloads insertion operations are relatively uncommon. In fact,
an insertion happens when a new network flow starts, therefore the insertion logic has to operate at the flow
arrival time scale, instead of the packet arrival time scale.

Handling full context tables: Despite the optimization in place, a Flow Context Table (and the stash) may
become full and, unfortunately, there is no universal strategy to handle such an event. For instance, consider
the example of a stateful firewall. One strategy could be the rejection of any new connection. This would
guarantee that ongoing connections are not interrupted. However, assume the firewall also handles high pri-
ority connections. Such connections may be dropped before establishment, causing e.g., a service level agree-
ment violation. In this last case, we may want to insert a new entry, evicting an already existing one. OPP
exposes to the programmer a flow context table full notification, in the form of a flag that further extends the
EFSM table’s entries match.

Also, the insertion of a new flow context entry always happens explicitly, associating the corresponding oper-
ation to an EFSM table’s entry. Therefore, an FSM describing a network function can also describe the logic
to handle Flow Context Table full events. Furthermore, to configure the eviction strategy, the insertion logic
can be configured to read the entries’ flow register R0 and to select for eviction the entry with the highest (or
lowest) value. That is, a NF’s FSM can use R0 to enforce a custom eviction logic. For example, R0 can be
used to store a last seen packet’s timestamp, to implement a logic that evicts the less active flows; or R0 could
store a packet counter to evict the smallest (biggest) flow.

Figure 21: Stateful element scheduling options. P1 and P2 belong to the same flow therefore they use
the same flow context. P3, P4 and P5 belong to different flows and can concurrently access memory.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 37 of 80 04. Apr. 2018

Guaranteeing consistency: Like other data plane designs, an OPP’s stateful element is a pipeline by itself,
composed by multiple stages. However, differently from the design of [35] the state read, modification, and
write feedback loop uses multiple clock cycles, introducing potential consistency issues. More specifically,
when two packet headers that access the same flow context entry are processed in short sequence, e.g.,
back-to-back, the second packet’s flow state read happens before the first packet’s flow state update has been
written back to memory (cf. first case of Figure 21). Stalling the pipeline while waiting for the state to be updated
would guarantee consistency at the cost of performance (cf. second case of Figure 21). In fact, [35] uses
read/modify/write state operations that are performed in a single clock cycle, to provide both consistency and
performance, at the cost of constrained update operations. OPP, instead, leverages the parallelism given by
the presence of different flows, which access different flow context entries, hence, memory areas. In particular,
the scheduler of Figure 21 guarantees flow context consistency by conservatively locking the pipeline only
when two packets may need to access the same flow context. Otherwise, packets belonging to different flows
can be processed by the pipeline with no harm for consistency (cf. third case of Figure 21). The scheduler
recognizes the flow a packet belongs to by using one of the hash keys (FK1) generated by the key extractor.
The key extractor is configured to generate FK1 selecting a (programmable) subset of the packet’s header
fields, which are then used as input to the hash function. When a new packet arrives, the scheduler feeds it to
the pipeline if no other packets with the same hash key are being processed. Otherwise, the scheduler stalls
the pipeline. Since this mode of operations introduces a head-of line blocking issue, our general design miti-
gates the problem including multiple waiting queues for packets belonging to different flows. In effect, the
scheduling block uses FK1 to assign packets to Q different queues, guaranteeing that packets belonging to
the same flow are always enqueued in the same queue. The scheduler is work-conserving and serves the
queues in a round-robin fashion. When a queue is selected, the scheduler verifies if a packet with the same
hash FK1 is already in the pipeline. If that is the case, the scheduler examines the next queue, otherwise it
extracts the queue’s first packet and feeds it to the pipeline. The queues do not completely solve the head-of-
line blocking issue. In fact, the number and length of the queues are characterizing parameters for the system’s
achievable forwarding latency and throughput. We study in [39] the related trade-offs. It’s worth noticing that
the scheduler re-orders the packets as they are being forwarded. However, packets belonging to the same
flow keep their relative order.

3.3.2 Aggregation tasks and lazy evaluation functions

Most of the operations performed by network applications can be divided in two types. The first type is per-
packet update that must be performed at wire speed and are usually composed by simple arithmetic/logic
operations (counters update, comparison, etc.) that are used to update the state of the flow corresponding to
the packet under analysis. The second type of operations usually perform aggregation and global analysis on
the set of flows that are under measurement. Examples of this type of operations are the search for the maxi-
mum values among the active flows for heavy hitter detection or the entropy computation for Distributed Denial
of Service (DDOS) detection. These operations can be performed with a time scale that is slower than the one
of the per-packet operations. On the other hand, the complexity required for performing these operations can
be higher and can require to read/update the whole stateful memory (the flow-content table).

We can also identify some per-flow operations that do not require to be updated for each packet, but that can
be performed lazily and provide approximate results. Evaluating the average packet size of a flow is a perfect
example of this lazy functionality. Performing the division between the number of received packets and the
overall amount of transmitted bytes require considerable HW resources (that corresponds to integrate an HW
divider in the datapath) and is probably an overshooting target. Instead, it should be sufficient to store for each
flow both the packet and byte counters and performing the operation in a more relaxed timescale. The block
called Internal Microprocessor in Figure 20 will be responsible of the execution of these tasks. The use of
an internal microprocessor that has direct access to the flow-content table will enable the execution of a wide
range of functionalities that can be used by the network applications.

3.3.3 Calendar

The FSM execution is usually triggered by the arrival of a packet, but we foresee that a flexible NF engine
should be also provide a method to schedule events that can occur after a specific time interval (or at specific
time). An example of the use of timers in a monitoring application is the tracking of Transmission Control
Protocol (TCP) connections, where it is useful to check if the receiver of a TCP packet sends back the ACK of
the received data in a certain time window. A specific action (called create_timer) of the FSM instructs the
calendar block in Fig. 1 to schedule a timer. The timer will have some parameters like the timer ID that identify
which type of timer has been scheduled and which action should be executed on when the timer expires. The
calendar block is in charge to manage the insertion of timers coming from the FSM execution and to check the

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 38 of 80 04. Apr. 2018

expiration of the scheduled timers. When a timer expires, the calendar can trigger an event that is processed
as a sort of “virtual packet” by the other elements of OPP.

3.3.4 Packet Manipulator Processor

PMP, the Packet Manipulator Processor is based on a VLIW processor with a custom Instruction Set Architec-
ture designed to perform very efficiently the operations required by packet processing. In particular, the inter-
face between the switch memory, where packets are stored, and output queues has been specifically designed,
using extensively multi-port memories to efficiently accomplish packet manipulation tasks. A memory designed
to handle data from an external IP parser is also included in the system for a better integration. The reason
behind a VLIW processor, able to execute more than one instruction in parallel, is justified by the fact that a
single-core RISC processor, although very simple and tunable for our needs, is not able to sustain high
throughput, as discussed in [40]. In particular, the fact that a RISC processor has a 32 bits’ memory alignment,
while packets are 8 bits aligned, makes this option not feasible since many clock cycles will be wasted on re-
aligning the memory. The proposed architecture differs from a many-core CPU in many aspects. In particular,
it occupies less area since data structures, such as register files, are shared between the execution units and
does not require any extra hardware to synchronize the cores and to verify the parallelizability of instructions.
In addition, a VLIW approach avoids the need of reordering packets, since in a many-core architecture different
packets are scheduled on different cores and maybe committed to output queues out of order. The complexity
of proper instruction scheduling, in a VLIW architecture, is demanded to the compiler. Since the routines in-
volved in packet manipulations are very simple, such a compiler maybe kept basic.

PMP Architecture: A VLIW CPU architecture is able to execute multiple instructions in parallel through the
use of n syllables, each long m bits, concatenated to form a unique instruction. All syllables are executed in
parallel by a dedicated lane of the CPU which is composed by a fetch stage (IF), a decode stage (ID) and an
execute stage (IE). In the particular case of PMP, the width of the instruction is 256 bits, allowing the simulta-
neous execution of 8 syllables on 8 different lanes. The top-view architecture of PMP is depicted in Figure 22.

Figure 22: PMP top architecture.

Taking as reference a standard CPU (SCPU), such as the MIP SCPU used in [40], this architecture can provide
a theoretical 8x instruction throughput14.

14 The actual improvement can be less than 8x, since the 8 syllables can be executed in parallel only if they are mutually independent. If

there are less than 8 independent syllables to execute, the VLIW instruction is filled by NOP operations, and the actual improvement of
the VLIW architecture with respect to a standard architecture decreases.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 39 of 80 04. Apr. 2018

The PMP architecture differs from a standard VLIW processor for several design choices that we identified as
mandatory in order to obtain high throughput in the specific task of packet manipulation, such as:

 Memory & registers prefect.

 Multiple memory units.

 Short pipeline.

The need of memory and internal registers prefect arises from the high memory pressure required in header
rewriting and data movement. Since requesting data from memory and registers may take several clock cycles,
data is queried to these units in advance, in order to have the requested data ready when needed in the syllable
execution phase. In particular, for the operations involving operands stored in the register file, operands are
queried already in the fetch stage, directly latched in the pipeline register of the decode stage and finally
provided to the execute stage without stalls. In the same fashion, for load operations from memory the data
is queried from memory already in the decode stage. For the same reason, PMP allows 8 memory units to
execute operation on the memory in parallel, allowing 256 bits per clock cycle to be moved from/to memory.
As in almost all the pipelined CPU architectures, the management of branches can significantly affect the
performance of the PMP. In fact, in theory the next instruction to be executed is known only at the end of the
execute stage, thus if a branch is executed, the instructions that are in the fetch and decode stages could be
invalid, resulting in a misprediction. Although stalling the pipeline and wait for the branch instruction to give the
result can be a tentative solution, we implemented speculative execution, meaning that every time the PMP
encounters a branch it assumes that the branch is not taken, starting executing instruction right after the branch
instruction. The misprediction costs a number of clock cycles proportional to the depth of the pipeline. For this
reason, PMP implements a very short pipeline, having the branch misprediction penalty quantifiable in 3 clock
cycles. Every stage takes exactly one clock cycle to be executed.

The use of pipelining registers between the fetch, decode and execute stages allows the execution of an entire
instruction (8 syllables) per clock cycle. Another issue arising from the use of a pipelined architecture is the
fact that consecutive dependent instructions will encounter a data hazard: if an instruction in decode stage
depends on the results of another instruction that is in the execute stage, it will get the old value of the data
stored in the registers. In fact, the new one will be written on the register file only on the next clock cycle. In
order to overcome this issue, lane forwarding has been implemented. In this way, when a syllable is in the
execute stage, it sends its result not only to the register file, but also to the decode stage. This allows to the
instruction that is in decode stage to have always the updated value. The details of each lane are depicted in
Figure 23.

The control unit is responsible for handling branches, and is present only on the first lane, since we cannot
have multiple branches in a single instruction. The control unit operates on special registers, called branch
registers, containing results of compare operations.

Figure 23: PMP Single lane structure.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 40 of 80 04. Apr. 2018

3.4 OAI platform for SDN-based programmable network functions

OAI [45] is an open open-source software-based implementation of the LTE/LTE-A system spanning the full
protocol stack of 3GPP standard both in RAN and core network domains. Such platform enables innovation in
the area of mobile/wireless networking and communications. With OAI, the transceiver functionality (of a BS,
access point, mobile terminal, core network, etc.) is realized via a software radio front end connected to a host
computer for processing.

As the RAN is the most complex part of the mobile network infrastructure, it offers many opportunities to benefit
from the SDN principles. The OAI platform is upgraded to support the SD-RAN platform. For this purpose, we
implemented the FlexRAN [20] as an SD-RAN platform extending from OAI, which provides separation of the
control plane and data plane through a new custom southbound API. FlexRAN provides a flexible control plane
designed with support for real-time RAN control applications, flexibility to realize various degrees of coordina-
tion among RAN infrastructure entities, and programmability to adapt control over the time.

The FlexRAN platform is made up of two main components: the FlexRAN Service and Control Plane, and
FlexRAN Application Plane. The former follows a hierarchical design and is composed of a Real-time Con-
troller (RTC) that is connected to a number of underlying RAN runtime, one for each RAN module (e.g., one
for monolithic BS, or multiple for a disaggregated RAN). The RAN runtime provides a flexible execution envi-
ronment to run multiple virtualized RAN instances, monolithic or disaggregated, allowing them to monitor and
control the underlying RAN with the required level of isolation and sharing. The control and data plane sepa-
ration is provided by RAN runtime environment which acts as an abstraction layer with the underlying RAN
module on one side and RTC and control apps on the other side. The FlexRAN protocol facilitates the com-
munication between the RTC and the RAN runtime at each RAN module. RAN control applications can be
developed both on the top of the RAN runtime and RTC Software Development Kit (SDK) allowing to monitor,
control and coordinate the state of RAN infrastructure. Such applications could vary from soft real-time appli-
cations including monitoring that obtain statistics reporting to more sophisticated distributed applications that
modify the state of the RAN in its runtime phase. All the produced Edge data and APIs are open to be con-
sumed by third parties as a second level north-bound APIs exposed by the network control apps.

Figure 24 shows the FlexRAN architecture that is composed of two entities, where RTC controls a small net-
work area (order of 100 BS) and is in charge of time-critical operation on a small time scale (order of ms or
tens of ms), and can be connected to a number of RAN runtime, one for each data plane, and RAN runtime
acting as an execution environment with a local controller, providing a limited network view, handling control
delegation by the RTC or in coordination with other RAN runtime and/or RTCs. Note that the RTC itself can
be connected to a more centralized controller for a large network area (on the order of 1000 BS) with a larger
time-scale (order of hundreds of ms).

Figure 24: OpenAirInterface and FlexRAN platforms to support SD-RAN.

Realtime Controller

RAN Runtime

RAN API

RAN Data
Plane

RAN Runtime

RAN API

RAN Data
Plane

X86-based Edge Cloud Infrastructure

RAN RT
Control App

X86-based Edge Cloud Infrastructure

SDK

RAN RT
Control App

SDK

RAN Hard RT
Control App

SDK

FlexRAN
Control Protocol

RAN RT
Control App

SDK

RAN RT
Control App

SDK

RAN Soft RT
Control App

SDK

Edge Open Data and APIs

C
o

n
tr

o
l P

la
n

e

Control AppControl AppControl AppControl AppControl AppControl App

A
p

p
lic

at
io

n
 p

la
n

e

Uu,Split-IF S1

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 41 of 80 04. Apr. 2018

To control and manage the BS data plane actions, the RAN runtime API is introduced to provide a set of
functions that constitute the southbound APIs. These functions allow the control plane to interact with the
targeted data plane in five ways:

 Get and set configurations like the uplink/downlink bandwidth of a cell;

 Request and obtain statistics like transmission queue sizes of UEs and signal-to-interference and

noise ratio (SINR) measurements of cells;

 Issue commands to apply control decisions (e.g., calls for applying MAC scheduling decisions, per-

forming handovers, activating secondary component carriers);

 Obtain event notifications like UE attachments and random access attempts;

 Perform a dynamic placement of control functions to the RTC or the RAN runtime (e.g., centralized

scheduling at the RTC or local scheduling at each RAN runtime).

These API calls can be invoked either by the RTC through the FlexRAN control protocol or directly from the
RAN runtime if control for some operation has been delegated to it. Table 2 provides a list of some exemplary
RAN-specific API calls. Note that the RAN runtime is in charge of retrieving the cell and user related information
from the underlying RAN such as cell bandwidth, and user Reference Signal Receive Power (RSRP) and
Reference Signal Receive Quality (RSRQ) through the API calls, and can trigger events when a state changes,
e.g. user attachment and TTI (frame and subframe). In addition, such API calls may be related to the network
functions, resources, users, etc. belonging to a particular slice. It can be seen that different types of network
applications can be developed ranging from monitoring for a better decision making (e.g., adaptive video op-
timization) to control and programmability for a better adaptability and flexibility to services (e.g., by controlling
resource allocation, adjusting the handover logic, changing functional splits, updating precoding matrix, or
even disabling/enabling ciphering/deciphering etc.).

To deploy such RTC and runtime relation in a disaggregated RAN, the multi-agent model can be applied
among distributed entities, i.e., CU and DUs. These multiple agents are aware of the applied functional splits
and can be controlled centrally (or delegated) to change the applied functional split in between. In particular,
Figure 25 shows the model with multiple FlexRAN agent on the top of RAN entities (i.e., CU and DUs). These
agents provide the programmability on the data plane as it not only enables the composition of shared and

Table 2: FlexRAN API calls.

API Target Direction Example Applications

Configuration
(Synchronous)

eNB,
UE,
Slice

RTC Runtime

UL/DL cell bandwidth, reconfig-
ure Data Radio Bearer (DRB),

Measurements

Monitoring,

Reconfiguration,

Self-Organizing
Networks (SON)

Statistic,
Measurement,

Metering

(Asynchronous)

List of
eNB,

UE,

Slice

Runtime RTC

Channel Quality Indicator (CQI)
measurements,

SINR measurements,

Reference Signal Receive
Power (RSRP) / Reference Sig-
nal Receive Quality (RSRQ) /

UL/DL performance

Monitoring,

Optimization,

SON

Commands

(Synchronous)
runtime RTC Runtime

Scheduling decisions,

Admission control

Handover (HO) initiation

Real time Con-
trol,

SON

Event Trigger Master Runtime RTC

TTI,

UE attach/detach,

Scheduling request,

Slice created/destroyed

Monitoring,

Control actions

Control delega-
tion

runtime RTC Runtime
Update DL/UL scheduling,

Update HO algorithm

Programmability,

Multi-service

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 42 of 80 04. Apr. 2018

dedicated network functions requested by the network slice but also collaborates with others for programmable
functions split. For instance, when changing the functional splits between CU and DUs via deploying the PDCP
from CU toward the DUs, related agents are reconfigured by the controller and the runtime can recompose the
end-to-end RAN data plane forwarding path for each instantiated slice. Further, these multiple agents are split-
aware and thus they only provide the corresponding statistics and measurements of the deployed VNFs toward
the controller.

RU1

(PHY)

RUk

(PHY)

RUk+1

(PHY)

RUN

(PHY)

DU1

(MAC,RLC)

DUM

(MAC,RLC)

CU
(PDCP,L3)

...
...

...

Runtime
(FlexRAN Agent)

Runtime

(FlexRAN Agent)

Runtime

(FlexRAN Agent)

FlexRAN
Controller

Include
split-specific info

Figure 25: Multi-agent model and FlexRAN controller in a disaggregated RAN.

3.5 Porting of OAI on the Zynq platform

As the requirements for the RAN become more complex, requiring higher speeds with channels operating with
more than 100MHz widths, the efficient real time processing becomes a challenge. The current architecture of
solutions designed to run over commodity GPP, such as OAI, are limited by such factors. To this aim, UTH is
developing some new target hardware that will enable the real time handling of such channels, by offloading
computationally intensive tasks to the Zynq FPGA platform. This is expected to reduce the execution time of
the offloaded functions by a factor of 3, and the overall layer execution (e.g. PHY) by a factor of 2. For the
efficient implementation of the suggested functionality, the respective interfaces must be developed in order
to allow the communication from the user-space OAI execution to the FPGA implementation of the functions.
To this aim, several components need to be designed and developed in order to allow this offloading process.

For the purpose of offloading specific functions to the FPGA, the OAI code will be overridden to use functions
from an API that will be developed. This API will match the subsequent call of the corresponding offloading
functions on the FPGA, through the mapping that is done over the driver. The driver is in charge of providing
the interface to the FPGA from the OAI eNB/gNB point of view. The driver will be handling all the IO processes
with the FPGA, providing the requested input for the FPGA functions, and retrieving the results to OAI. Since
OAI is strictly timed in terms of execution, as receive and transmit threads have to be executed in less than 1
ms, the driver shall communicate with the FPGA in significantly less time. In [47], this communication overhead
is calculated to range from 2-4 μs, thus rendering such process to be feasible. Similarly, since the FPGA
offloading tasks take up significantly less time to be completed, the driver shall maintain their output in a cache
memory, so that to deliver them to OAI executable when needed.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 43 of 80 04. Apr. 2018

Figure 26: FPGA offloading process for the OAI RAN.

3.6 Point-to-Multipoint (P2MP) MAC processor

The characteristics of the 60 GHz band strongly benefit directive communications in the physical layer (PHY),
both for steering the signal energy to the appropriate direction as well as to reduce the inter-symbol interfer-
ence (ISI). The use of directional antennas efficiently at 60 GHz require of special MAC protocols that take into
consideration the singular characteristics of 60 GHz channels.

Beamforming represents the key technique to compensate the severe channel attenuation and to reduce in-
terference in mmWave networks. The 5G-PPP 5G-XHaul project put an enormous effort on developing a full
analogue front-end (AFE) with beamforming capabilities [48],[49], which will be leveraged in 5G-PICTURE for
extending the programmability of the mmWave meshed BH solution. The P2MP MAC processor accounts on
the architecture of this AFE (up-/down conversion stage plus analogue beamforming capabilities).

The existence of programmable platforms poses a tremendous impact in mmWave communications, in a way
that they allow low-cost setting up and configuring links. Stations with available steering capabilities allow
cheap configuration/installation and P2MP connection schemes. In terms of performance, it is suitable to make
available the best beam steering configuration (beam code book) before the communication is established. In
meshed backhaul networks it is indeed important to search for possible communication links between stations
which are expected to communicate between each other. The directionality of the communications allows
simultaneous communication between the stations but, in that case, proper scheduling of the transmissions is
necessary, having the stations to be synchronized.

3.6.1 Objectives

One of the goals of scheduling is to calculate the proper communication/link setup to achieve the maximum
throughput and low latency depending on the established network topology and the current load of the network.
To that end it is important to extract routing tables which have to be maintained to enable efficient frame/packet
forwarding.

In a mmWave meshed network, one of the expected features of the mesh itself is to be able to calculate
alternative communication/link setup schedules for unavailable links. Is the MAC layer who is responsible of
detecting these unavailable links and to react accordingly pursuing maximum throughput and low latency.

On the other hand, the high throughput in such conditions (including beam switch duration or any additional
guard intervals of the system), is only possible when minimizing PHY and MAC protocols overhead. This is
normally achieved with short packets aggregation or with retransmissions on MAC layer. We aim at keeping
functionalities into the MAC which were supposed to lay in higher layers in a sense to be able to recover
packets

3.6.2 Installation and link establishment

Communication using directional antennas (beamforming / beam steering) can only be established when both
communication end points steer the beam to the other. Therefore, before a communication can be established,

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 44 of 80 04. Apr. 2018

beam training between the stations must be accomplished. Depending on the scenarios, the complexity of the
neighbourhood discovery changes according to the possible beam positions respective the opening window.
It can be distinguished between low distance and high distance scenarios.

Pencil beams with an opening window of about 2 degrees (2°) allow data communication in scenarios with
high distances of many hundred meters. In the worst case, all beam positions of a station have to be tested
for each beam position of the other station. In low distance scenarios the opening window can be increased
which reduces the amount of beam positions to be tested.

The beam setup phase can be done at the beginning as a separate procedure or during the running MAC
protocol. After knowing the positions of the station(s), represented by the beam positions, a normal communi-
cation mode can be triggered. The switching to the beam positions has to be done before communication and
of course “updated” during communication. The AFE, and concretely the beamformer or vector modulator (VM),
should support storage of more than one weight set in order to get low switching durations between different
beam directions without reprogramming the VM.

3.6.3 Mesh network architectures/topologies

Different network architectures and topologies are considered in a meshed BH, such as:

 single-hop point-to-point,

 single-hop point-to-multi-point ,

o star

 multi-hop

o tree

a)

b)

c)

d)

Figure 27: a) single hop point-to-point, b) daisy chain, c) single hop point-to-multipoint,
d) complex mesh.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 45 of 80 04. Apr. 2018

3.6.4 Medium access

The common used access scheme is half-duplex TDMA, given the design of the AFE. This design considera-
tion ruled out adopting a full-duplex mode, which would increase considerably the complexity of the AFE; the
use of polarized antennas, which would double the size of the antennas and, hence, the form factor of the
solution; and the use of FDD, which requires very good channel separation and a filter bank when channel
bonding is supported.

A channel access scheme has to be defined in order to reduce protocol overhead in the MAC and PHY layer.
This depends on current network architecture (scenario) and the requirements on data throughput and latency.

In a single-hop P2MP scenario, only one link can be served at the same time. Depending on the latency and/or
throughput, the service time and repetitions of each link has to be specified. A longer service time increases
the throughput but also increases the latencies for the other links.

Some aspects have to take into account for multi-hop P2MP which can be structured as chain (Figure 27b),
tree (Figure 27c), and/or “true” mesh network (Figure 27d).

3.6.4.1 Chain / Tree

This architecture is used in scenarios where more (LTE) stations on a lamp poles served by a feed point at
start of street/chain. Not all stations are visible for the feed point/station. Only half of the links can be active on
the same time in order to move the packets through the stations. The maximum latency of the last station
depends on the amount of stations/links and service time of a link configuration. There is no alternative route
possible in case of blockage of a link. Worst case is the blockage of the first link.

3.6.4.2 Mesh

Mesh architecture combines all architectures single-hop, multi-hop, chain/tree. This allows additional feature
like independent stream and using alternative routes when links are blocked. Due to the use of directional
antennas the beam switching has to be done before communication and has to be known for all stations. A
switching scheme (link configuration over time) has to be distributed to all stations. The link configuration
depends on the requirements of the streams/flows (throughput, latency) and has to be calculated by a central
module. Additional link configurations can support blocked links automatically when a mechanism is imple-
mented which detects link blockage. Rain can also degrade link throughout which requires a reducing of mod-
ulation scheme or increasing the FEC. The new channel conditions also need recalculation of the switching
scheme.

Switching scheme calculation should be aware of MAC and PHY parameters of each link which results in
different frame transmit durations. The service time of a link should be a multiple of the frame durations includ-
ing additional overhead or the frame. Otherwise, frame length/duration has to be calibrated.

3.6.5 Functionalities of the MAC layer

The MAC layer should support mechanisms reducing the PHY and MAC overhead like frame aggregation. The
length of such an aggregated frame depends on the current channel conditions and the allowed transmission
duration time which depends on the switching scheme.

Frame retransmissions for important or all frames should be supported. This avoids propagating errors (miss-
ing frames, e.g. ACKs) to higher layers. The response time increases and time consuming error mechanisms
of higher layers not necessary (e.g. TCP goes into slow-start when frame is missed).

Switching scheme (TDMA) should also select TX and RX mode of station of current switching configuration.
This avoids negotiation before communication/transmission which results in increase of overhead and reduces
the throughput.

3.7 NETCONF server and Yang models for Time Sensitive Networks (TSN)

TransPacket’s IP Cores can be integrated in SDN systems through TransPacket’s NETCONF/YANG based
data-models. TP will contribute in Task 3.2 by making available to the project the yuma123 NETCONF/YANG
open source framework, and, for demonstrator purposes, a NETCONF interface and a YANG model for low
and fixed latency Ethernet. For the purpose of configuration and monitoring of the Ethernet-based TP IP cores,
a yuma123 NETCONF/YANG framework will be used. The NETCONF server framework is developed as

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 46 of 80 04. Apr. 2018

yuma123, a free BSD licensed system15 which is made available to this project and maintained by TP. Its
purpose is to provide an open source – currently the only NETCONF/YANG toolchain in Debian – YANG API
in C and YANG based CLI (yangcli) and server (netconfd) applications. Branching from the last BSD licensed
branch of the now proprietary YumaWorks16, yuma123 is being evolved in two key directions: (1) creating a
stabilized and mainstream system by fixing critical bugs and a build based on autoconf/automake; (2) exten-
sions added for support of new standards as e.g. IETF standards (ietf-nacm, ietf-system, etc.), new YANG
extensions, ietf-yang-library and partial support for YANG 1.1, NMDA support, etc.

Figure 28: The Yuma123 framework.

The detailed framework is illustrated in Figure 28. The main components of the framework are:

 netconfd: NETCONF server engine which is the interpreter of the YANG data model and NETCONF
Protocol, current version based on RFC 6241 and 6242, including data types, abstract object for PDU
components and remote procedure calls (RPCs).

 yangcli: YANG-driven NETCONF client application that supports scripts, XPath, and many automated
features to simplify management of NETCONF servers.

 Yangdump: used to generate the template C code for the server instrumentation library (SIL) for the
YANG modules.

 Yangdiff: compare revisions of YANG modules.

 Subsystem for NETCONF over SSH transport.

 pyang: verification/validation of YANG modules by reusing existing tools written for alternative schema
languages.

The NETCONF datastores contain YANG model based data structures (running, candidate and start-up con-
figurations) which represent the configuration of the device containing the NETCONF server. This configuration
can be saved in a non-volatile storage so the configuration can be restored upon reboot.

The Server Instrumentation Libraries (SIL) are compiled loadable modules implementing the YANG model
behavior (managed by the NETCONF server) by controlling the networking device. It is the glue between
hardware and software and is generated by parsing the YANG data models (yangdump in yuma123). The
code is implemented in C and it contains functions that are hardware dependent, e.g. interface and protocols
configuration, and independent, e.g. SNMP, NTP, RMON, etc. E.g. for a new functionality or vendor support
the following simplified steps would be required:

1. Create the YANG module data model definition, and/or use the existing YANG modules.

 Validate the YANG module with the yangdump.

15 http://yuma123.org/wiki

16 https://www.yumaworks.com

http://yuma123.org/wiki
https://www.yumaworks.com/

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 47 of 80 04. Apr. 2018

2. Test the interface by loading the YANG modules in netconfd without corresponding implementations.
A dry-run validation without actual target hardware and SIL implementation.

3. Create a SIL that implements the YANG model.

 C file implementing the model using the server side yuma123 APIs and the device side instru-

mentation and hardware access APIs.

4. Compile and install the newly generated SIL library.

5. Run the netconfd server and load the new module.

Currently, IEEE 802.1, The Ethernet TSN group is standardizing YANG models for the IEEE 802.1Qbv, IEEE
802.1Qbu and IEEE 802.1Qci in PAR IEEE 802.1Qcw, while IEEE 802.1Qcr will include its YANG model. Thus
for being compatible with- and building on the same framework as standard TSN protocols, new YANG models
will be developed for supporting the configuration of the TP Ethernet-based low and fixed latency IP cores.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 48 of 80 04. Apr. 2018

4 Hardware Abstractions

5G-PICTURE is defining several hardware abstraction methodologies to enhance usability of the programma-
ble network platform and to abstract the implementation details of each platform. In particular, this section will
describe: i) the Application Programming Interfaces (APIs) for the wireless platforms and to provide configura-
bility of data plane implemented with OpenFlow/NETCONF interfaces as well as with low-level API for FPGA
register configuration via Ethernet-based commands. ii) Interfaces for connecting Physical Network Function
(PNF) running LTE Layer 1 to VNFs running LTE layer 2 and above. iii) programming languages for data plane
programmability like P4 for packet level programmability and OpenCL for signal processing level. The above
mentioned abstraction methodologies are described in detail in the rest of this section.

4.1 APIs

In this section will be described the set of APIs that are under development under the activities of Task 3.2. In
particular, the APIs will be used both to provide SDN-like configurability to several wireless platforms like the
BWT Typhoon and the GateWorks Ventana and to provide configurability for the dataplane via Ethernet-based
commands.

4.1.1 APIs for the BWT Typhoon platform

The BWT Typhoon platform described in section 2.5 features an NPU with an open Linux platform, where data
plane forwarding can be enabled with an implementation such as Open vSwitch and data plane programma-
bility can be achieved by running OpenFlow. The approach for controlling and abstracting the hardware func-
tionality will rely on a control application running in user space (in the Typhoon NPU). The goal is to prepare
this application to respond to the control plane in the network and, then, route commands or requests internally
to other user space applications as well as the network device driver developed by BWT for its HYDRA modem.
A specific set of API will be developed to communicate with the device driver that is responsible for handling
the configuration command to the hardware.

One example of virtualisation functionality that is going to be explored by BWT in 5G-PICTURE is that of
synchronisation functions in WP4. The aim is to abstract the synchronisation functionality in the Typhoon plat-
form by relying on an OpenFlow-based controller. The controller will be prepared to receive requests from a
synchronisation harmoniser, to be developed in WP4. When receiving control plane packets, the control ap-
plication will hand the suitable configurations or information requests towards both the user-space synchroni-
sation application running in the Typhoon’s NPU as well as the network device driver.

4.1.2 APIs for the GateWorks Ventana platform.

Configurability of Sub-6GHz transport nodes is achieved through the implementation of different interfaces: i)
a northbound interface used to exchange high-level configuration with a controller, based on REST principles;
ii) a set of YANG models representing configurable entities in the transport nodes, made available to the con-
troller via NETCONF; and iii) a Transactional API (TransAPI) to implement the system calls needed for those
operations on the YANG models to take effect. The relationships among the different interfaces and their
applications is further discussed in the following paragraphs.

For the management of Sub-6 GHz transport nodes, an SDN controller based on the OpenDayLight (ODL)
Boron distribution is implemented. The controller is responsible for managing and configuring the IEEE 802.11-
based wireless interfaces according to the requirements of the different tenants sharing the backhaul infra-
structure. Physical interfaces (IEEE 802.11ac/n) are used either as access network interfaces or to form wire-
less backhaul links with other transport nodes. The physical radio resources used by those interfaces are then
assigned to different tenants by means of virtual interface instances. For example, a given wireless access
interface can be used to provide access to two (or more) users of two (or more) different tenants’ networks.
While the physical device to which those users are connected is the same, a different virtual interface is used
for each tenant. The physical device controls physical parameters such as frequency channel, modulation and
coding scheme, transmitted power, etc., which will be common to all virtual interfaces instantiated thereof.
Virtual interfaces can be configured to have less/more radio resources (e.g. airtime) or different security pa-
rameters.

The instantiation, configuration or shutdown of wireless interfaces (physical or virtual) is not done manually on
the devices, but via a dedicated NETCONF API, where the NETCONF servers are running on the Gateworks
(GW) SBCs (cf. section 2.7) and the client accessing those services is a software module running in the ODL
controller. NETCONF is a protocol that allows the definition and execution of RPCs on the platform running

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 49 of 80 04. Apr. 2018

the server, i.e. the GW SBCs. For example, setting up a physical wireless interface, generating a virtual inter-
face on top of it and configuring the transmission power of the interface can all be done via the NETCONF
protocol, assuming that the underlying mechanisms have been implemented in RPCs. The NETCONF API
development is based on CESNET-Netopeer17. The server being used is based on the version from the Net-
opeer repository with slight modifications to make it compatible with GW’s ARMv7 architecture. The API is
being entirely developed by I2CAT from scratch, specifically designed to enable the different Sub-6GHz net-
work slicing functions envisioned in 5G-PICTURE’s WP4 [22] and, at the same time, aiming to remain flexible
and easily extendable.

The ODL controller is responsible for connecting the different servers and to reconfigure them on demand.
Changes of the wireless node’s configuration can be triggered automatically or via specific commands issued
to the ODL controller via a northbound interface implemented with a REST API (which is not further detailed
here). A reason for reconfiguring a wireless node could be, for example, the instantiation of an access point in
the area covered by a 5G-PICTURE node, where clients of a particular tenant start requiring connectivity
services. Such a request would be handed to the ODL controller which, in return, would use NETCONF to
configure the nodes (the access node and transport nodes in the path between the client and the tenant’s
network). The wireless nodes within Netopeer are defined via a Yang-model, called “i2cat-box”. This Yang
Model is shown in Figure 29.

The i2cat-box’s TransAPI consists of the following elements:

 A set of callbacks: functions which will be invoked every time a change on the configuration is re-
quested (this change can be external, due to the interaction with the controller, or internal, due to an
administrator’s manual – e.g. through ssh – connection to the server).

 A database: stores the current status and current configuration for the node.

 Transaction queues: these store the changes being made to the device before the changes are com-
mitted to the database.

 A set of scripts: Invoked by the TransAPI to reconfigure the node.

Figure 29: Yang model of the I2cat-box.

17 https://github.com/CESNET/netopeer

https://www.lucidchart.com/documents/edit/e538d705-0264-46e4-aa66-ec9674bbc062/0?callback=close&name=docs&callback_type=back&v=2324&s=595.4399999999999

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 50 of 80 04. Apr. 2018

4.1.3 Ethernet-based API for Read/write of FPGA registers

TransPacket makes available a custom protocol specification which can be used for communication between
a controlling CPU hosted in server/workstation and the FPGA chip(s) of the system. The communication be-
tween the embedded FPGA Microblaze soft core microcontroller and the external CPU is running over an
Ethernet-based protocol. The protocol is designed to be usable in a multi-CPU, multi-FPGA environment. In
this version it is not supported to send information from FPGA to CPU. If the FPGA needs to send asynchro-
nous messages to the CPU(s) due to e.g. a network event or failure, this protocols needs to be extended. For
now, we assume that the CPU(s) is responsible for polling the FPGA for status information.

All information exchanged between the CPU and the FPGA is contained in ordinary Ethernet frames with a
specific EtherType value, e.g. currently 0x1515 is being used. An example of the Ethernet frame is illustrated
in Figure 30. The fixed size of all packets is 320 bytes including the 14 byte header and excluding the Frame
Control Sequence (FCS). The reserved fields are put in place for padding when necessary, to simplify the
FPGA design as the first 32-bit word, the magic cookie will be at word boundary.

Dst. MAC address Src. MAC address
Ether
Type

Reser
ved

Magic
Cookie

Command
Word

Status
Word

Serial
Number

Originatin MAC
address

Reser
ved

Auxiliary cmd
or response data

6 Octets 6 Octets 2 Oct. 2 Oct. 4 Octets 4 Octets 4 Octets 4 Octets 6 Octets 2 Oct. 240 Octets

Figure 30: the Ethernet frame for Read/write of FPGA registers.

For addressing the FPGA, the CPU uses either the broadcast address (all-ones), or the link layer (MAC) ad-
dress of the particular FPGA as the destination address for packets going to the FPGA(s). The EtherType field
of the frames is set to 1515 and the Command Word and auxiliary data fields are used to instruct the FPGA.

Packets that have a destination MAC address different from the MAC address of the FPGA, and different from
the all-ones broadcast address, must be discarded (they are not intended for the FPGA).

A set of conditions is set for discarding incorrect packets based e.g. on the magic cookie value and set match-
ing values of other fields. If the packet is accepted for processing, the entire contents of the incoming packet
is copied into the output packet buffer, while the source address is copied into the destination MAC address
of the output packet buffer. This makes sure any responses are sent back to the CPU that initiated the com-
mand. The following commands are available:

0. POLL – Do nothing except retransmitting the output buffer;

1. NOP – No Operation, i.e. do nothing, but initialize the output buffer and transmit it;

2. CQ – (Seek You – Reply contains device info and MAC);

3. REG – Register Access, read or write one or more registers.

The last and most important command enables programming (write) of the IP Core and reading the register
values for e.g. statistics. The auxiliary data field is paired up as two 32-bit variables for each register to be
read/written. The two 32-bit integers contains:

1- aux[2*n]: WriteEnable + RegisterBank * 65536 + RegisterNumber

2- aux[2*n + 1]: The value to be written to the register

Where n is between 0 and 34. The register bank typically identifies what kind of operation is needed to address
the correct register(s). The value to be read/written may not be a 32-bit value. In such cases, it is dependent
upon the particular register or register-bank how the value is represented (and whether there are don't cares
or reserved bits). The WriteEnable is 0 for read operations, and 0x80000000 for write operations. This allows
for 32768 register banks, with 65536 registers in each. This division is only arbitrary and can be changed.
Should a register bank have more registers than 65536 (for instance the buffer memory), several adjacent
register banks can be used to cover the required number of registers.

4.2 OAI or Interface for Physical Network Functions

As OAI is providing a state-of-the-art solution for beyond 4G and 5G prototyping based on Open Source code,
the project will utilize the solutions provided by the platform in order to demonstrate the potential of the provided
technology solutions. Although the high-level interplay between the different network functions will be provided
in WP5, the respective interfaces shall be incorporated within the platforms that built in WP3 in order to handle

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 51 of 80 04. Apr. 2018

the low-level configuration of the components. Towards this aim, we plan to extend OAI in order to allow its
real-time configuration as VNFs.

Currently, there are several efforts that introduce network programmability to OAI. One notable addition is the
implementation of the Small Cell Forum's network functional API or nFAPI interface [46]. nFAPI defines a
network protocol that is used to connect a PNF running LTE Layer 1 to a VNF running LTE layer 2 and above.
The development of the nFAPI interface provides an open interface between LTE layer 1 and layer 2 that
allows for interoperability between the PNF and VNF and also to facilitate the sharing of PNF's between differ-
ent VNF's.

In this context, the project will pursue the integration of hardware integrating the PHY layer and accessible
through the nFAPI interface with the VNFs implementing the rest of the stack. For this purpose, an agent
software will be developed that will allow the configuration of the nFAPI parameters, as well as the PHY RAN
parameters of OAI through a high-level REST based API. The solution will leverage existing code capabilities
that exist in OAI, such as asynchronous networking interfaces based on TCP/UDP connections. Apart from
the nFAPI interface, 5G-PICTURE will engage in the configuration of the respective agents configuring other
versions of the OAI implementation, such as the IF4p5, IF5, CU/DU that is implemented in WP4, etc.

Figure 31: High level Agent description for handling OAI PNFs and VNFs.

4.3 Programming languages for data plane programmability

4.3.1 OpenCL development of network functionalities

OpenCL18 (Open Computing Language) is a unified programming framework for developing parallelizable nu-
meric computing algorithms for different processing architectures like CPUs, GPUs, and FPGAs with a single
code base, using a specific subset of either C or C++ programming language syntax together with native
vectorial data types. It further offers a huge set of freely available community-driven programming libraries for
various tasks in fields like signal processing, data analysis, and machine learning.

OpenCL is also well integrated in the Xilinx SDx19 family of FPGA development environments. ADVA will there-
fore evaluate the use of OpenCL for rapid high-level development of VNFs to be defined in WP4 in a WORE

18 https://www.khronos.org/opencl

19 https://www.xilinx.com/products/design-tools/all-programmable-abstractions.html

https://www.khronos.org/opencl
https://www.xilinx.com/products/design-tools/all-programmable-abstractions.html

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 52 of 80 04. Apr. 2018

– Write once, (compile and then) run everywhere – manner, and is further considering performance compari-
sons to similar VNFs developed with optimized architecture-specific programming languages and frameworks.

4.3.2 Development of P4 compiler for Spectrum device

As stated in section 3.3, Mellanox will use their Mellanox Spectrum™ Ethernet Switch as target platform for
the development of the P4 compiler for programmable dataplanes. In particular, Mellanox is designing and
developing a compiler for the P4_16 version [8].

4.3.2.1 Mellanox P4 Compiler main components

The main components of the P4 compiler that are currently under design are:

1) P4 architecture model:

the P4 architecture identifies the P4-programmable blocks (e.g., parser, ingress control flow, egress control
flow, deparser, etc.) and their data plane interfaces. The P4 architecture is a contract between the program
and the target. Manufacturer must therefore provide both a P4 compiler as well as an accompanying archi-
tecture definition for their target. The P4 architecture goal is to come up with a uniform target architecture in
that way we can benefit flexible and programmable pipeline but in the same time make it HW agnostic to the
application designer. All ASIC vendors must accept this target architecture. In order to achieve this goal we

want to use the Switch Abstraction Interface (SAI) pipeline as a reference20.

2) Mellanox P4 target architecture:

The current Mellanox P4 target architecture consists of from 5 programmable blocks (1 parser block, and 4
control – match action).

Figure 32. Mellanox’s P4 target architecture.

Programmable block 1 – parser: Mellanox provides parsing graph base line user will be able to add up to 4
new nodes to the packet-parsing graph.

Programmable block 2 – ingress port: ability to define chain of multiple match action tables supported ac-
tions – drop, forward to port , mirror, packet modification, routing – including Equal-cost multi-path (ECMP)
routing, tunnels encap ,tunnel decp , set QoS, counters, meters ,go to table.

Programmable block 3 – ingress router: ability to define chain of multiple match action tables supported
actions – drop, mirror, packet modification, routing – including Equal-cost multi-path (ECMP) routing ,tunnels
encap ,tunnel decp , set QoS, counters, meters ,go to table.

Programmable block 4 – egress router: ability to define chain of multiple match action tables supported
actions – drop, mirror, packet ,forward to port , packet modification, set QoS, counters, meters ,go to table.

Programmable block 5 – egress port: ability to define chain of multiple match action tables supported actions

– drop, egress mirror, packet modification, set QoS, counters, meters ,go to table.

3) P4 compiler architecture

The P4 compiler architecture is depicted in Figure 33. The front end is target independent and is related only
to the language constructs. The front end functionalities are split in two phases: (i) A Syntactic phase that is
BNF based. Currently the P4 compiler under development is able to read the source files and provide as output
the symbol tables; (ii) Semantic phase – Verifies the Symbol tables. Mellanox is extending the default semantic
checks with platform specific ones. The second part of the P4 compiler architecture is the Mid-end. The Mid-

20 https://github.com/opencomputeproject/SAI/tree/master/doc/behavioral%20model

P
a

rs
e
r

 P
o

rt

C
o
n

tr
o

l
1

B
ri
d

g
e

C
o

n
tr

o
l
2

R
o
u

te
r

C
o
n

tr
o

l
3

e
P

o
rt

C
o
n

tr
o

l
4

https://github.com/opencomputeproject/SAI/tree/master/doc/behavioral%20model

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 53 of 80 04. Apr. 2018

end provides platform independent API generation. In particular, the Mellanox compiler will generate two sets
of APIs:

1. SAI-Flex API: auto generated SAI API for each newly created P4 match action table;

2. P4runtime: p4runtime API that will enable configuring the box for an SDN Controller as defined

by the P4runtime specifications21.

Compiler Front End
Syntactic Phase

Semantic Phase

Back End Target PD CodeGen

P4 Source

Files
P4 Files

By

Mellanox /SAI
By The

Customer

Mellanox SDK

Mid End API CodeGen

Figure 33. P4 compiler architecture.

Finally, the Back End is devoted to generate the specific commands to configure the target. This phase will
use the already developed Mellanox SDK to create the actual configuration for the switch.

21 https://p4.org/p4-runtime/

https://p4.org/p4-runtime/

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 54 of 80 04. Apr. 2018

5 Hardware Technologies

This section describes optical and radio technologies and components, which provide the integrated physical
network infrastructure used in the 5G-PICTURE project. In particular, the section describes: i) the passive
optical technologies based on the WDM-PON and active technologies based on the elastic frame-based optical
networks, ii) the development of time sensitive Ethernet technologies, iii) the channel modelling and compari-
son between Sub-6 GHz and mmWave frequencies, iv) the Active Antenna Distributed Unit (AADU) architec-
ture with functional split options, v) SDN enabled routing and forwarding/C-RAN as programmable network
function, vi) use of MIMO technologies at mmWave wavelength and vii) the Multi-Link and Multi-Protocol PHY
interfaces (MPIs) allowing flexibility to mix and match a variety of protocols and technology solutions used in
5G-PICTURE.

5.1 Passive optical technologies

ADVA has many years of experience in developing WDM-PON (Passive Optical Network) technology22. There
are currently several new prototypes in development. ADVA will offer the reuse of the WDM-PON prototype
introduced in the 5G-XHaul project23 for any kind of PON needs in the 5G-PICTURE network, e.g. the connec-
tion of BBUs and RRUs as shown in Figure 34.

The Optical Line Terminal (OLT) is operating as a pluggable module of the ADVA FSP 3000 AgileConnect24
scalable optical transport product line, using a Red Pitaya STEMlab 125-14 board25 as independent control
unit. It can dynamically connect with up to 8 Optical Network Units (ONUs). Each ONU wavelength in the
prototype system is able to reach bidirectional bit rates of at least 10 Gb/s over a 20 km transmission distance.
The downlink operates at the L-band. The uplink operates at the C-band.

A dedicated management port of the OLT will offer a WDM-PON specific NETCONF/YANG based control and
monitoring service for SDN integration [60].

Figure 34: ADVA’s WDM-PON in the 5G-XHaul network.

22 https://www.advaoptical.com/en/products/technology/wdm-pon

23 https://5g-ppp.eu/5g-xhaul

24 https://www.advaoptical.com/en/products/scalable-optical-transport/fsp-3000-agileconnect

25 https://www.redpitaya.com/f130/STEMlab-board

https://www.advaoptical.com/en/products/technology/wdm-pon
https://5g-ppp.eu/5g-xhaul
https://www.advaoptical.com/en/products/scalable-optical-transport/fsp-3000-agileconnect
https://www.redpitaya.com/f130/STEMlab-board

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 55 of 80 04. Apr. 2018

5.2 Elastic optical technologies

To support the varying degrees of bandwidth and latency requirements introduced by the various RAN deploy-
ments, the use of dynamic elastic optical network solutions supporting a higher degree of time granularity (i.e.
subwavelength) can be achieved by the TSON technology. TSON includes two different types of nodes,
namely edge and core nodes, incorporating different functionalities and levels of complexity. The edge nodes
provide the interfaces between wireless, PON and data centre domains to the optical domain and vice versa.
The ingress edge nodes are responsible for traffic aggregation and mapping, while the egress edge nodes
support the reverse functionality. The edge nodes process the incoming data streams and generate optical
time-slices at the ingress edge node, and also regenerate the original information from time-sliced optical
frames at the egress edge node. These technologies allow handling of Ethernet frames, natively supporting a
broad range of framing structures and communication protocols including CPRI (or eCPRI), Open Base Station
Architecture Initiative (OBSAI), 10G Ethernet as well as protocol extensions required in support of the func-
tional split concept under discussion in the framework of 5G. In 5G-PICTURE, at the optical network ingress
TSON edge node, the interfaces receive traffics generated by fixed and mobile users. The incoming traffic is
aggregated into optical frames, which are then assigned to suitable time slots and wavelength for further trans-
mission. At the egress point, the reverse function takes place, disaggregating the traffic to forward next nodes.

In 5G-PICTURE, the optical edge node is also equipped with elastic bandwidth allocation capabilities sup-
ported through the Bandwidth Variable Transceivers (BVTs). In addition to providing BH functionalities, this
infrastructure also interconnects a number of DUs and end users with a set of general purpose servers and
specific purpose HW. The use of general purpose servers is to enable the concept of virtual BBUs (vBBUs),
allowing for an efficient sharing of compute resources. This joint functionality is facilitated by the edge nodes
that comprise a hybrid subsystem of an I/Q switch and an Ethernet switch. The I/Q switch handles different
functional split options with strict synchronization and bandwidth constraints, while the Ethernet packet switch
handles BH traffic and relaxed FH transport classes. At the ingress part of the Ethernet switch module, the
interconnection of DUs and CUs is provided, whereas at the egress part of the module, traffic is aggregated
and placed in a suitable transmission queue. The elastic optical network solution will comprises BVTs, band-
width-variable optical cross-connects and fast optical switching modules. This approach enables the allocation
of variable-size spectral/time slots, thus supporting services with continuous channel allocation at various bit
rates and services with sub-wavelength time slot allocation.

The advent of elastic optical networking, enabled by the adoption of a flexible channel grid and programmable
transceivers, opens the door to a truly dynamic active management of optical networks. This is especially
interesting in the context of supporting greatly varying transport services (both FH and BH) for the RAN. Fur-
thermore, active networking enables to transparently set a RAN network over the optical network. For example,
a pool of BBUs concentrated in a CU can be located at a selected node of the metro network segment, while
the DUs can be attached to different other nodes. To support this functionality in a cost-effective manners, it
has been proposed to use programmable sliceable-bandwidth variable transceivers (S-BVTs), which could be
present at the 5G optical nodes in order to concurrently serve different cell sites. The (S-)BVTs can be remotely
configured by the control plane (CP) for optimal management of the network resources. The parameters to be
configured at each (S-)BVT include wavelength, spectral occupancy and modulation format/power per flow
according to the network and path conditions.

5.3 Time sensitive Ethernet

5.3.1 Deterministic delay mechanisms for Ethernet

Ethernet bridges were originally designed for best-effort traffic with no requirement on maximum delay through
a network. Due to the need of using Ethernet for audio and video transport in professional studios, there has
been a drive in IEEE 802.1 Ethernet standardization for mechanisms ensuring zero congestion packet loss,
as well as control on delay and Packet Delay Variation (PDV). Recently, main drivers for further evolvement
in standardization include industrial control and automotive applications, with mobile fronthaul as the most
recent.

In the IEEE 802.1 work, TSN mechanisms include both mechanisms for minimizing delay and for controlling
the delay variation, ensuring that all packets always receive low and bounded delay. The IEEE 802.1Qbu
defines a preemption mechanism enabling minimized delay on deterministic traffic when mixed with best-effort
traffic within the same network. By disrupting the transmission of best-effort packets when a deterministic high
priority packet arrives, packet delay caused by packet contention is lower than, for example, the strict priority
mechanism where delay corresponds to the duration of a best-effort Maximum Transfer Unit (MTU) packet.
Preemption is only performed if at least 60 bytes of the preemptable frame are already transmitted and at least

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 56 of 80 04. Apr. 2018

64 bytes of the frame remain to be transmitted. This results in a worst case of 1240 bit times (155 Bytes) of
delay, and a best case of zero delay. Hence, the PDV corresponds to the duration of transmitting 155 Bytes.
The preemption mechanism works hop-by-hop, fragmenting the best-effort packets and reassembling these
at the next hop. Since fragments do not contain MAC address-headers, forwarding of fragments through
bridges is not supported, and preemption may only be activated with bridges supporting the IEEE 802.1Qbu
standard.

The IEEE 802.1Qbv (enhancement for scheduled traffic) defines how a set of queues, destined for an output
port, can be served by a round-robin mechanism; it allows each of the queues to be served within timeslots,
one-by-one in a cycle, scheduling one or more packets in bursts from each of the queues into designated time
slots. The duration, and hence, start of the time slots, may vary. Moreover, time-synchronization by, for exam-
ple, using the IEEE 1588 protocol, is required. The maximum delay on a packet caused by the bridge, is given
by the duration of the scheduling cycle.

The IEEE 802.1Qch, cyclic queuing and forwarding (CQF), applies the IEEE 802.1Qbv in combination with
IEEE 802.1Qci per-stream filtering and policing (PSFP). The mechanisms in the latter standard enable filtering
(i.e. identifying packets in a flow through header inspection) and policing by only accepting packets arriving
within a predefined time window on a defined port. It also assigns packets to an output queue. In CQF, two
output queues exist for each output port, being alternately served by a cyclic IEEE 802.1Qbv scheduler, which
allows input to the first queue while one or more packets in a burst from the second queue are being scheduled,
and vice versa. It is all based on synchronizing the queues of all the bridges in the network, as well as syn-
chronizing incoming time windows with the scheduling of the outgoing queues for each individual bridge. As a
result, packets are scheduled in groups, receiving a fixed delay of one cycle time for each hop in the network.

Another traffic shaper, not requiring synchronization while still bounding delay, is the IEEE 802.1Qcr asynchro-
nous traffic shaper. The shaper assigns an eligibility-time to all incoming packets. These eligibility-times are
applied for selecting packets for scheduling. Packets are dropped if they stay too long within the bridge (i.e.
beyond a predefined residence time). This mechanism has the ability to reduce the average delay, but maxi-
mum delay will still be higher, or at its best, equal to the synchronous mechanisms operating with asynchro-
nous input streams. This is because by definition, in an asynchronous network the packet arrival pattern may
be similar to a worse case pattern in a synchronous network. Hence, the maximum delay for IEEE 802.1Qcr
will be equal to or higher than the maximum delay for IEEE 802.1Qbv.

A mechanism not relying on packet preemption, while enabling a mix of deterministic traffic and best-effort
traffic in a network, is a time window based priority mechanism described for Integrated Hybrid (hybrid as in
packet and circuit) Optical Networks (IHON). The mechanism eliminates PDV on the deterministic traffic by
adding a fixed delay corresponding to the MTU of the best effort traffic. Best effort packets are scheduled in
between deterministic packets whenever a gap is available that is equal to or larger than the packet waiting in
a best-effort queue. Main benefits are elimination of any interference and PDV on the deterministic traffic
caused by best effort traffic. Furthermore, different from the packet-fragmenting as in preemption, the mecha-
nism works together with bridges that do not support it, allowing lowered PDV in the network for each node it
is applied.

Furthermore, IHON describes an aggregation and scheduling mechanism where PDV from contention is
avoided. The mechanism relies on preserving the packet gaps between packets in the individual deterministic
packet streams.

Packet streams being aggregated are scheduled into time slots in a cycle synchronized across the network
using e.g. a control packet at the start of each time slot. However, the packet streams are allowed to be
asynchronous with variable length packets and still transferred with no added PDV. As illustrated in Figure 35,
the streams being aggregated are divided up into virtual containers before being scheduled to the output. A
fixed delay corresponding to one cycle time is added to each of the packet streams.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 57 of 80 04. Apr. 2018

Figure 35: Aggregation of multiple deterministic packets streams into virtual containers while pre-
serving packet gaps.

5.3.2 Bounded delay aggregation and fixed delay forwarding

A bounded delay when aggregating and forwarding packets in asynchronous systems may be achieved using
a gap-planning and gap-detection scheme (GPGD). In difference from the IHON scheme aggregating in virtual
containers with packet gaps preserved enabling fixed delay, the bounded delay scheme aggregates packets
into time slots without preserving the gaps between the packets. The maximum delay is bounded by the dura-
tion of an aggregation cycle containing a number of time slots, similar to the method described in IEEE
802.1Qbv. A difference is that while the IEEE 802.1Qbv relies on a synchronous network for preserving the
planned gaps, the GPGD scheme uses a GPGD for detecting vacant time slots in an asynchronous network.
The gap-detection is similar to the scheme applied in IHON for insertion of Statistically Multiplexed (SM) traffic.
For a node with an incoming traffic stream containing bypassing traffic, gaps corresponding to the size of time
slots may be detected without PDV impact on the bypassing traffic stream. By allowing traffic to be added only
within the duration of a time slot and by planning the maximum number of time slots that can be assigned
between an ingress and egress point across the network, a bounded delay on the traffic to be inserted is
guaranteed. For example, for a system with a cycle containing 8 time slots, a wavelength across a network
from an ingress-node to an egress-node may be reserved for using the GPGD scheme. Along the path, traffic
may be added and dropped within a number of time slots assigned to each node. Exactly which time slot and
when the specific time slot occurs for each of the nodes are not fixed but varies according to the traffic pattern.
However, within the duration of a cycle, a vacant time slot will be found for the node adding traffic, as long as
the number of time slots along the path is not oversubscribed. Hence, for this scheme the PDV equals the
maximum delay, given by the cycle time.

5.4 RF processing and modelling

5G mobile networks are expected to support higher mobility, higher data rates and lower latency [47]. Recently,
we experience the offset of 5G standardization in 3GPP, widely known as New Radio (NR). In the context of
NR, the air interface will extend, compared to 4G, to carrier frequencies from 1 GHz up to 100 GHz [50].
Moreover, it will co-exist with the evolved LTE (Release 13 and beyond) [47], and bring together existing and
newly emerged technologies.

The solution of a large number of antennas at the BS, i.e. Massive MIMO, has been one of the main candidates.
Due to the large multiplexing gain and antenna array gain, high spectrum efficiency can be achieved. Further-
more, high-energy efficiency is provided, because of the concentration of radiated energy.

Another highly researched solution to 5G networks is mmWave. First, the consideration of mmWave frequen-
cies resolve the issue of limited spectrum. Moreover, mmWave, although limited to shorter ranges compared
to Sub-6 GHz and the existence of penetration loss, research has shown that mmWave systems can support
high data rates, reduce the antenna-size and are ideal for small-cell deployments.

At the same time, vehicular communications (i.e. cars, trains) constitute a great part of research towards 5G
networks. Based on the above, for the Rail Vertical we will investigate the following two 5G solutions in the rail
environment:

a) Sub-6 GHz LTE Massive MIMO coverage cell,

b) mmWave Access Points (APs) along the trackside.

To investigate the aforementioned scenarios, first the channel will be modelled with the Ray-tracing Tool de-
veloped in the University of Bristol. Based on those results, further processing will be performed to evaluate

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 58 of 80 04. Apr. 2018

the spectral efficiency (using Matlab RBIR simulator) and emulating the capacity of the network (using the
Anite F8 Channel Emulator). The main characteristics of the Ray-tracing tool are discussed in Section 5.4.1.

5.4.1 Ray-tracing Tool

The mmWave 3D Ray-tracing engine, developed at the University of Bristol, constitutes a powerful tool that
allows channel modelling of various environments. In particular, the Ray-tracing simulations can model im-
portant parameters like delay and angular spread, delay, phase, time of flight, Angle of Arrival (AoA) and Angle
of Departure (AoD) of each ray, amplitude, etc. Adding beamforming is also an important tool that the simulator
provides.

The Ray-tracing engine allows the investigation of any environment, as long as the particular map is bought
and loaded. Then, for each simulation, the user can define the specific route, the number of APs on the route,
the distance between them, the resolution, the transmit power and many other parameters that would simulate
in the best possible way a real scenario. As a result, all possible ray paths are identified, at the end of the
simulation, and subsequent significant parameters are stored in a series of files.

Both scenarios that will be investigated as 5G solutions to communications in a train environment, for the
5G-PICTURE project, will be based on channel modelling simulation on the Ray-tracing platform.

5.4.1.1 Sub-6 GHz LTE Massive MIMO coverage cell

In this scenario, depicted in Figure 36, 5G connectivity to trains could be achieved by Massive MIMO technol-
ogy. APs on the train will be served by a Sub-6 GHz LTE Massive MIMO station per cell. High data rates are
expected due to the multiplexing gain as well as the array gain that a Massive MIMO system offers. Massive
MIMO stations could be connected via CPRI to coordinate connectivity as the train moves from one cell to
another, i.e. hand-over.

For this scenario, we will consider a BS at a height of 25 m and APs on the train at 2.5 m high. Considering a
2 km long track, at a frequency of 3.5 GHz, the channels will be modelled with the Ray-tracing simulator, in
the University of Bristol (CSN group). Moreover, with the Matlab RBIR simulator, the spectral efficiency will be
investigated, in a rail environment, using the ray-tracer acquired channels. Finally, the F8 channel emulator
platform will be used to emulate the capacity and compare results with the ones produced by the Matlab RBIR
simulator.

5.4.1.2 mmWave Access Points (APs) along the trackside

For the mmWave scenario, depicted in Figure 37, we will consider mmWave APs, at a height of 3 m, placed
along the trackside, 400-500 m apart, and around 3-5 m away from the tracks, and mmWave APs on the train,
all at a height of 2.5 m. Thus, fronthaul will be based on mmWave technology. We will consider both 26 GHz
and 60 GHz frequencies.

We will consider a track 2 km long. Like in the massive MIMO scenario, the channels will be modelled with the
ray-tracer simulator. In addition, beamforming will be introduced, selecting beam width in azimuth and eleva-
tion. Then, further simulations will be performed using also the RBIR simulator and the F8 channel simulator
to fully investigate and evaluate spectral efficiency and capacity of this scenario.

LTE Massive MIMO Basestation

Figure 36. Vertical Rail – Sub-6 GHz LTE Massive MIMO cell.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 59 of 80 04. Apr. 2018

Distance around
200m

Mm-Wave Access Point

Distance around
200m

Distance around
200m

Figure 37. Vertical Rail – mmWave APs along trackside.

Figure 38. Bristol Temple Meads route (1.4 km).

Figure 39. Bristol Temple Meads - Rays for a specific point.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 60 of 80 04. Apr. 2018

Figure 40. London Paddington route (3.5 km).

Figure 41. London Paddington – Rays for a specific point.

Finally, results of the Ray-tracing tool can be seen in Figure 38-41. First a 1.4 km route, depicted in Figure 38,
at the Temple Meads train station in Bristol, was simulated with only one AP, at a height of 3 m, on the trackside
(the beginning of the route) and one AP, at 2.5 m height, on the train. The resolution was 1 m and the transmit
power 0 dB. Figure 39 shows all the rays for this scenario for a particular point. Similarly Figure 40-41 depict
the route (at Paddington train station in London) for a 3.5 km track and the same parameters as before.

5.5 RF/BB processing

Τo address the limitations of the D-RAN and C-RAN approaches, 5G-PICTURE proposes a novel architecture
exploiting flexible functional splits. The introduction of these splits allows dividing the processing functions
between the CU and the remaining baseband processing functions. The flexible functional split will be imple-
mented by using specific programmable network platforms that are configured by means of SDN technologies.
In this section will be illustrated the 5G-PICTURE approach for supporting a flexible functional split.

5.5.1 SDN enabled routing and forwarding between RU and BBU

In 5G-PICTURE, the SDN technology can be applied in the FH for routing and forwarding the data stream
between RU and BBU. As shown in Figure 42, the RU and BBU pools are connected to the SDN controller.
The SDN controller sends a message to the RU and BBU for updating the rule of routing and forwarding the
data in FH. For the SDN enabled routing and forwarding, the RU and BBU run applications for communication
with the SDN controller through the control channel. A SDN agent running on the top of RU and BBU receives
and sends the message from and to the controller to update the rule and to collect information for the config-
uration of routing and forwarding.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 61 of 80 04. Apr. 2018

5.5.2 In-Band E-CPRI for enhanced synchronization

CPRI has been introduced to enable the communication between RRUs and BBUs in the FH network. The
CPRI is expected to be deployed for the data communication in the FH split into the RRUs and BBUs in 5G
network. However, recently eCPRI that is encapsulated CPRI in Ethernet frame is becoming a more attractive
solution due to cost effective and greater reconfigurability. Ethernet frame is a common form of packets in
network not only for data but also for control channel. The eCPRI can exploit the existing network infrastructure
without using a dedicate equipment to support CPRI frame. In general, the CPRI protocol comprises of user
data, control and management, and synchronization channels. The eCPRI encapsulates each of the channels
into Ethernet format. However, the eCPRI has an issue to synchronize the control and management data with
the user data due to transmitting in separated channels between RRUs and BBUs. In 5G-PICTURE, the In-
Band eCPRI is proposed to address the issue to provide better synchronization. The In-Band eCPRI can form
the Ethernet frame with IP headers. The payload of the In-Band eCPRI contains not only the user-data but
also the control information data for RU in the header of the payload. The control data in In-Band eCPRI will
be added into the payload if necessary. Therefore, the user-data of In-Band eCPRI can always be processed
after applying the control information into RU before processing the user-data.

In 5G-PICTURE, the FPGA platform is used to implement the In-Band eCPRI processing units to improve the
synchronization of data and control processes between RRU and BBU. Figure 42 illustrates the processing
units of RRU and BBU for the In-Band eCPRI. The Figure shows the transmission process from BBU to RRU.

Figure 42. In-Band eCPRI protocol processing unit.

The In-Band eCPRI module consists of eCPRI parser, parameter extractor, controller and radio frame proces-
sor. When the In-Band eCPRI packet arrives at RRU, the parser parses the packet to divide into user data and
control information. While the user data is buffered in the radio frame process, the extractor pass the parameter
into the controller. The controller will update the radio frame processor with the extracted information and
trigger to start the radio frame processor for sending the user data to the RU.

5.5.3 C-RAN functional split as programmable network function

As mentioned beforehand, the RAN programmability aims to treat the RAN as disaggregated RAN modules
with functional splits in between. A generic RAN module architecture and available modules packaged as an
entity is shown in Figure 43. It includes the northbound and southbound interface with the programmable data
plane and in-band configuration. Also, several static (configuration file) and dynamic (FlexRAN and Opera-
tion/Business Support System (OSS/BSS)) management interfaces are revealed. These interfaces enable the
considered software-based RAN module to be programmed over the both control and data plane processing
as we mentioned in the Section 1.3. Note that the FlexRAN can delegate the control decision to be made at
the RAN runtime over the RAN module as mentioned beforehand.

Based on aforementioned RAN module, we further consider the programmability over the functional split of C-
RAN topology. As mentioned in the Deliverable D4.1 [22], such technical component aims to utilize both in-
band control (between RU and DU) and out-band control (between DU and CU) to dynamically change the
functional split in between. Further, it will under the control of a centralized FlexRAN controller over the involved
RAN entities. For instance, the split between RU and DU is in-band re-configured by the DU and such recon-
figuration is under the management of a centralized controller in order to properly maintain the RAN service
toward corresponding users via handover, data buffering, etc.

However, such functional split dynamicity shall follow the capabilities of both end-point (e.g., CPU, memory)
and connected interface (e.g., FH capacity). For instance, the FH throughputs of LTE system in 10 MHz radio
bandwidth with two different functional splits are measured in Figure 44 (Split A corresponds to the 3GPP
option 8 and Split B corresponds to 3GPP option 7-1). We can see that the FH throughput shall be larger than
500 Mbps when applying Split A option; however, less than 300 Mbps is required for Split B. Such requirement
can be reduced via applying the sample compression [28], i.e., a factor of 2 is seen when applying the A-law

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 62 of 80 04. Apr. 2018

compression. Moreover, the required number of CPU cores is also measured based on the Intel i7 Sandy
Bridge architecture in 3.2 GHz. The results in [28] shows that 2 CPU cores are required to deploy the RU for
10MHz radio bandwidth in Split A and 3 cores for Split B. To sum up, the split reconfiguration shall be aware
of capability among involved entities and connections, and the controller can only program the applicable
functional split changes.

Figure 43: Generic Interface Ports for OAI Entities.

Figure 44: Fronthaul throughput of 10 MHz radio bandwidth of two functional split.

Figure 45: RU prototype.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 63 of 80 04. Apr. 2018

Figure 46: Logical C-RAN deployment example.

Based on the aforementioned measurement statistics, we come up with the RU prototype deployed at the
EURECOM in Figure 45. An RU prototype contains the Pico-ITX or other smaller motherboard (e.g. UpBoard
with Intel Atom quad-core processor), Power over Ethernet (PoE+) to support power supply, wiring for 1 Giga-
bit/sec Ethernet, RF front-end components (PA, LNA, Switch), 10 MHz/PPS frequency synchronization cable,
baseband-to-RF radio unit (e.g., USRP B200-mini) and RF front-end circuits. The control of changing the func-
tional split is in-band controlled through the Ethernet interface by the corresponding DU as stated in Section
3.5 of deliverable D4.1. Note that as DU and CU are logically centralized, and hence they can be deployed
over the GPPs (or some specialized hardware for low-latency processing) among the centralized computing
farm.

In Figure 46, we present the logical C-RAN deployment following the aforementioned three-tier disaggregated
RAN manner. Each RU is connected with individual 1 Gigabit/sec Ethernet that are aggregated and multiplexed
in the distribution switch. These aggregated switches provide the PoE capability for each connected RUs. The
2-tier network edge cloud is composed of network fabric (i.e., core network, MEC entity) and C-RAN fabric
(i.e., CU, DU) using densely-deployed commodity servers which execute the OAI RAN software, CN function,
control and management applications. Moreover, the DU is connected through 20 Gigabit/second FH network
to the aggregation switch and provides the timing reference as the precision time protocol (PTP) grandmaster.
Further, the CU is connected with DU through 10 Gb/s link and provides some core network functions and can
be jointly deployed with the MEC server to provide dataplane programmability.

5.5.4 DSP and Layer-1 Functions Integrated into Radio Units

The introduction of massive MIMO [42] with several dozens or even hundreds of antenna elements renders
current CPRI-based C-RAN architectures infeasible due to the extremely high data rates required on the CPRI
fronthaul (see, e.g. [44]). To mitigate this, it necessary to include parts of the digital signal processing (DSP)
of the baseband directly into the remotely deployed radio units. Especially an integration of layer-1 functions
offers to dramatically reduce the required transport capacity. Effectively, the RRH and the distributed unit (DU)
become a single entity, including complete analogue and RF processing, as well as partial baseband function-
ality. This will be referred to as an Active Antenna Distributed unit (AADU) to differentiate from DUs or RRHs
with passive antennas, as currently used. Within 5G-PICTURE, the architecture of such AADUs is investigated
and a corresponding hardware platform will be developed. This will be described in the following sections.

5.5.4.1 AADU Architecture

Figure 47 shows the high-level architecture of an AADU. It can be differentiated into several radio sub-units
(RSUs) and an interface sub-unit (ISU). The RSUs are responsible for per antenna processing, which can
include analogue and RF processing (filtering, amplifiers, ADC/DAC), calibration, and partial digital baseband
processing, as well as local power distribution and an interface towards the ISU. The ISU performs all joint
processing, including partial baseband processing, control & management, and an interfacing towards the CU.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 64 of 80 04. Apr. 2018

The focus in 5G-PICTURE will be on how to distribute the baseband processing functionality among CU, ISU
and RSU, which will be discussed in detail in the next subsection.

The AADU uses a modular approach, by utilizing several identical RSUs to compose the antenna array. This
has several advantages:

 Different antenna configurations/form factors (16x4, 8x8) can be built relatively quickly.

 Analogue components (PAs, LNAs, ADCs/DACs) are close to antenna element location, which

avoids long RF routing distances.

 Per-antenna processing can be performed on distributed hardware, reducing processing requirement

per RSU.

 The data rate between the RSU and ISU can be reduced, as each link transports data of only a sub-

set of the antennas.

5.5.4.2 AADU Functions and Processors

The physical layer of 4G and 5G radio technology is the most computational complex of the overalls tasks. By
including parts of it in the AADU, both the computational requirements of the CU and the FH data rates can be
dramatically reduced. However, it is still an open question which parts of the PHY should be ideally placed at
the AADU. Figure 48 shows the typical processing steps of the downlink of a PHY layer. In addition, the func-
tional splits according to 3GPP terminology are indicated. One additional split is indicated as 7.A. The differ-
ence of this split lies in the specific beamforming performed by the AADU. In general, there are two options for
beamforming: time-domain based, right before A/D conversion, or frequency-domain based, before resource
element mapping.

The TD beamforming has the advantage, that it can be performed after the full 3GPP PHY layer processing
and is hence more independent. In addition, in only converts the beam data to per-antenna data right before
D/A conversion, hence limiting the interconnect data rate (see also Sec. “Interconnect Architecture”). However,
it does not per-subband or per-subcarrier beamforming. Also, channel estimation cannot be performed per
antenna, hence requiring beam-sweeping or similar approaches for beam selection.

Figure 47: AADU overall architecture.

Figure 48: Physical layer processing chain.

RateMatch
Scrambling

Modulation
mapper

La
ye
r	
m
ap
p
er

RateMatch
Scrambling

Modulation
mapper Fr

eq
u
en
cy
	d
o
m
ai
n
	

b
ea
m
fo
rm

in
g

Resource
element

mapper

Resource
element

mapper

OFDM
signal

generation

OFDM
signal

generation

Radio	1

Radio	NTi
m
e	
d
o
m
ai
n
	

b
ea
m
fo
rm

in
g

C
o
d
in
g

M
A
C
+R
LC
+P
D
C
P

S1

Split	6 Split	7.1 Split	8

DAC

DAC

Split	7.ASplit	7.3 Split	7.2

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 65 of 80 04. Apr. 2018

Figure 49: AADU hardware architecture.

FD beamforming in comparison offers full freedom in beamforming and allows for per-antenna channel esti-
mation. However, it needs to be incorporated into the overall 3GPP stack and required the aggregation of per-
antenna streams, which increases interconnect data rates.

Both approaches will be considered in the following and an optimal selection will be made within the scope of
5G-PICTURE.

In principle, all of the PHY layer processing functions can be performed on GPP hardware [45]. However, this
is currently usually limited to a few spatial layers and a single 20 MHz carrier. With the introduction of up to 32
layers in LTE Rel. 14, carrier aggregation of several 20 MHz carriers or larger carrier bandwidth in 5G NR,
PHY processing will be very challenging on GPPs. At the same time, the processing functions on the PHY are
usually fixed and require little flexibility or programmability. Accordingly, hardware accelerators such as FPGAs
will be used in the AADU, which offer a good compromise between programmability and power efficiency. In
addition, ARM-based GPP can be synthesized or hard-coded into FPGAs to allow for a flexible programming
for less computational tasks. Depending on the functional split between AADU and CU, the AADU can either
include only FPGAs, or additional GPP processors with the FPGAs serving as accelerators. Figure 49 shows
the principal hardware components for an AADU with integrated layer-1 DSP functionality.

5.5.4.3 AADU Functional Split

The chosen functional split has a strong impact on the design of an AADU, as it both determines the processing
capabilities as well as the interface requirements. In addition to the usually functional split between CU and
DU, the proposed AADU architecture incorporates an additional, inter-CU functional split between ISU and
RSU. While having no impact on the transport network architecture, it still needs to be considered for the
overall design.

Figure 50 shows three different functional split options under consideration for the AADU. IN the following the
corresponding characteristics are listed.

Figure 50: AADU functional split options.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 66 of 80 04. Apr. 2018

Option 1:

 TD beamforming in RSU, ISU serves only as interconnect, remaining PHY processing on CU.

 High fronthaul and ISU/RUS data rate but reduced compared to per-antenna transport.

 Limited processing capabilities in AADU (TD beamforming only).

Option 2:

 TD beamforming in RSU, partial PHY processing on ISU, remaining PHY processing on CU.

 Higher computational requirements for ISU due to FFT/IFFT.

 Beamforming weights and pilots need to be transferred between CU/DU.

 Further reduced FH data rate.

Option 3:

 Partial PHY processing in RSU, remaining PHY processing on ISU.

 Higher computational requirements for RSU due to FFT/IFFT.

 Possibility to perform FD beamforming.

 Higher computational requirements for ISU (full PHY processing).

 GPP+FPGA required in ISU.

 Low FH data rate.

5.5.4.4 Interconnect architecture

Coupled to the functional split is the interconnect architecture in the AADU, which also has an impact on the
interconnect data rates. Three options can be considered, which are depicted in Figure 51: daisy chain, star,
or column-wise interconnect. In the daisy chain architecture, data from one RSU is passed to the next and only
one RSU is directly connected to the ISU. In this case, the final RSU/ISU interface has to carry the data stream
of all RSUs. While this has no impact for split option 1 and 2, where the beamforming is performed at the RSU,
it could effectively quadruple the interface data rate for Option 3.

In contrast, in the star architecture, each RSU is directly connected to the ISU. This limits the data rate on each
individual interface. However, it has the disadvantage of longer routing lengths, and the ISU still having to
transmit and receive the full data rate.

Finally, the column architecture is a compromise of the former two options, combining daisy chaining between
different rows of RSUs while using a star architecture for different columns.

Figure 51: AADU interconnect options.

To compare the different split and interconnect options, Table 3 gives the corresponding required data rates
on the two interfaces, the fronthaul from CU to DU, as well as the AADU-internal ISU/RSU data rate.

The assumptions are as follows:

 64 antennas on 4 RSUs16 antennas per RSU.

 8x8 antennas, 4x4 RSUs.

 2x20 MHz LTE carrier.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 67 of 80 04. Apr. 2018

 16 beams.

 32 bit time domain I/Q samples, 16 bit frequency domain I/Q samples.

 256 QAM.

 25% protocol overhead.

Table 3: Data rate for different AADU options.

5.6 MIMO at mmWave

To meet the high demands in terms of data rates of upcoming 5G access networks, the capacity of current
wireless networks must increase. There is the aim of 1000x increase in data traffic predicted by 5G till 2020
[52]. MmWave is seen as a key enabling technology for achieving high-data rates and high capacity in 5G.
High data rates are achievable due to large amount of unutilized bandwidth available in the mmWave spec-
trum. On the other side, high free space path losses are coupled with mmWave frequencies. Nevertheless,
small wavelengths allows design of large antenna arrays which can be packed in a small form factor. In this
way, mmWave systems can achieve sufficient array gain to provide sufficient link budget. Propagation meas-
urements done at 28, 38, 60 and 73 GHz showed the feasibility of mmWave communication in outdoor sce-
narios [53][54]. Although several frequency bands are being investigated, 60 GHz is of special interest due to
its unlicensed nature and the presence of solutions already available on the market. The best known are
solutions for local and personal area networks according to standards IEEE 802.11ad/WiGig [55] and IEEE
802.15.3c [56], respectively. Those standards treat only single stream transmission relaying only on RF ana-
logue beamforming, as depicted in Figure 52.

To support very high data rates (tens of Gb/s), it is necessary to have multistream MIMO transmission (spatial
multiplexing). An example of conventional MIMO approach used in the Sub-6 GHz band is shown in Figure
53.

Figure 52: RF analogue beamforming mmWave MIMO system supporting single stream transmission.

Data rate in Gb/s
Option 1 Option 2 Option 3

RSU/ISU DU/CU RSU/ISU DU/CU RSU/ISU DU/CU

Star 39.3 39.3 39.3 10.8 10.8 5.4

Daisy chain 43.0

Column 21.5

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 68 of 80 04. Apr. 2018

Figure 53: Conventional MIMO where all the signal processing is done in digital domain.

Figure 54: Hybrid precoding transmitter architecture.

Figure 55: RF Analogue beamforming structures: fully-interconnected structure (left), partially-inter-
connected structure (right).

In the conventional MIMO approach, all MIMO processing is done in digital domain. Each antenna has dedi-
cated RF chain with Digital-to-Analogue Converters (DACs) or Analogue-to-Digital Converters (ADCs). The
use of the traditional MIMO approach in mmWave systems with Large Aperture Arrays (LAAs), is not practical.
Such solution would introduce high hardware costs and increase the energy consumption.

For that reason, a hybrid beamforming solution for MIMO at mmWave, shown in Figure 54, is proposed. This
solution offloads some of MIMO processing to the analogue domain, and represents a trade-off in power con-
sumption and hardware complexity. In the hybrid beamforming architecture, the sharp beams are formed with
an analogue beamforming (phase shifters) stage which compensates for the large path loss at mmWave
bands; and the digital beamforming provides the necessary flexibility to perform advanced multi-antenna tech-
niques such as spatial multiplexing and/or multi stream transmission. Depending on the structure of the RF
analogue beamforming stage, fully-interconnected and partially-interconnected structures are proposed in the
literature, as depicted in Figure 55. In the former, the signal at the output of each RF chain is connected to all

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 69 of 80 04. Apr. 2018

antennas through the network of phase shifters, while, in the latter, each RF chain is connected to an antenna
subset [57].

A fully-interconnected structure provides higher beamforming (BF) gain as it utilizes all phase shifters and full
antenna array and has more degree of freedom in RF domain and it outperforms the partially-interconnected
one. However, it is argued that a fully-interconnected structure is not realizable in practice, being the latter
(using subarrays) is much more favourable.

5.6.1 LoS MIMO at mmWave frequencies

In addition to hybrid beamforming, mmWave MIMO architectures such line-of-sight (LOS) MIMO at mmWave
frequencies is attracting research interest [58][59]. LOS mmWave MIMO systems are actually interesting for
applications such as fixed distance BH links. A generic scheme of LOS MIMO system is shown in Figure 56.

Figure 56: LOS MIMO system [58].

Figure 57: LOS MIMO system with super-arrays [59].

LOS MIMO systems are analysed using the principles of diffractions-limited optics (image theory). Multiple
parallel data streams are possible utilizing specific spacing between antenna elements which is correlated with
link range. The relationship which relates antenna elements spacing D and the distance between transmitter
and receiver R is as follows

𝐷 = √
𝑅𝜆

𝑛
,

where 𝜆 denotes the carrier wavelength (5 mm at 60 GHz) and n represents the number of antenna elements
at the transmitter and at the receiver (assuming equal number). Following the above equation, a 4×4 (16-

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 70 of 80 04. Apr. 2018

element) square antenna array of dimensions nD×nD = 3.4×3.4 meters would operate at 1 km link range at 60
GHz. In addition, at 200 m link range, the same antenna array would have the size of nD×nD = 2×2 meters.
Considering single polarization, 2 GHz of channel bandwidth and 2.5 Gb/s data rate per channel or antenna
pair (for example, MCS 9 in IEEE802.11ad), such system could support 40 Gb/s aggregate data rate. In prin-
ciple, this system architecture is scalable to larger antenna arrays supporting super high data rates. In a 60
GHz LOS MIMO system is proposed using the so-called super antenna arrays which combine both beamform-
ing and spatial multiplexing, as depicted in Figure 57. Such systems are capable of achieving hundred Gb/s
aggregated data rates at small cell distances.

5.6.2 RF front-ends for MIMO at mmWave

In the 5G-XHaul project we have developed analogue-front end solution with RF beamforming [48][49]. Our
solution is flexible and modular relying on two integrated circuit (ICs), beamformer and up-/down conversion
modem. This allows different RF beamforming architectures at mmWave, such as massive MIMO arrays or
hybrid beamforming MIMO with subarrays. Exemplary solutions are shown in Figure 58. Examples of the AFE
boards developed in the 5G-XHaul project are shown in Figure 59, being the RF board shown on the left the
one consisting of beamformer and antenna array. This board can be used with different off-the-shelf 60 GHz
modems. On the right hand side, the complete 60 GHz solution with integrated antenna, 60 GHz beamformer
and up/down converter is shown.

Figure 58: Examples of different mmWave beamforming architectures: a) massive mmWave array, b)
hybrid beamforming mmWave MIMO architecture with subarrays.

Figure 59: 60 GHz RF front-ends: RF board with beamforming to be used with off-the-shelf up/down
converter (left) and complete RF front-end board (right).

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 71 of 80 04. Apr. 2018

The solution shown in Figure 58.a) can be used for designing a single antenna with high gain and narrow beam
of the overall super-array.

In 5G-PICTURE there is no plan to design these complex Analogue Front-End (AFE) solutions but to leverage
the existing ones (like those in Figure 59) for research on MIMO solutions, i.e. LoS mmWave MIMO or for a
subarray-type hybrid beamforming MIMO system. More details on the concept and possible implementation of
MIMO using these boards will be included in deliverable D3.2.

5.7 Interfaces - Multi-Protocol / Multi-PHY interfacing functions (MPIs)

Nowadays, current networks are fragmented and interconnected using proprietary interfaces. It is also a fact
that current architectures are vendor-specific architectures. These issues raise many inter-operability chal-
lenges. In 5G the aim is to relax these constraints towards a harmonized network with open, configurable
interfaces, to leverage the benefits of the diverse set of implementations.

The large variety of technologies present in 5G has very different characteristics including rates of operation
spanning from few Mbps up to several Gb/s and adopts a wide range of protocols and technology solutions
including PCIe 4.0, USB 3.1, 1G/10G/40G/100G Ethernet, SFI/XFI, SATA, Q/SGMII and CPRI. As the different
technology domains adopt different protocol implementations and provide very diverse levels of capacity gran-
ularity, etc., interfacing is critical.

In 5G-PICTURE there exists a plethora of technologies and implementations, bringing along diverse chal-
lenges to the consortium when setting up the interfaces between them. These interfaces and associated func-
tions will enable the required integration across technology domains, providing an integrated transport solution.
It is therefore of utmost importance to analyse and define the architecture and requirements of Multi-proto-
col/Multi-PHY Programmable Network interfaces. This work falls within Task 3.3 in WP3, where the physical
interconnections and associated programmability will be brought.

5G-PICTURE will leverage of fast Multi-PHY and Multi-Protocol interfaces based on state of the art FPGA
allowing great flexibility to mix and match a variety of protocols and technology solutions. To that end, we
pursue the development of high speed low cost energy efficient serializer/deserializer (SerDes) interfaces
based on FPGAs. These interfaces will facilitate the mapping of different QoS classes across different domains.
The output of these interfaces will be used as input to the Open Packet Processor (OPP), to support stateful
packet/flow processing related tasks.

The objectives of the MPIs are:

 to enable the support to heterogeneous networks,

 to enable mapping of traffic across infrastructure domains,

 to enable the selection of the optimal timing paths depending on the synchronization requirements,
and

 to enable end-to-end optimisation.

The functionalities being brought by these interfaces to the edge nodes encompass traffic adaptation, protocol
mapping, etc.

5.7.1 Initial design for optical edge nodes

One example of the functionality of the MPIs is shown in Figure 60, where HW programmability features at the
edge nodes support a variety of multi-protocol/PHY interfaces which allow mapping of very different traffic
streams coming from the wireless access domain to optical frames/streams, capitalising on a number of HW
programmable building blocks including:

 Open Packet Processor (OPP), and

 sliceable bandwidth variable transceivers (BVTs)

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 72 of 80 04. Apr. 2018

Figure 60: Edge node equipped with HW programmability features.

The MPI takes as input OPP frames/streams coming from network nodes with different PHY/protocol charac-
teristics, convert and forward them to an OPP node. The OPP performs additional encapsulation/decapsulation
operations for packet level interfacing, select the per-flow allocations of the incoming streams and mark the
packets to send to the BVTs. The BVTs will utilize FPGAs, advanced Bandwidth Variable (BV) optical cross-
connects and fast optical switching modules to enforce the allocation of variable size-spectral/time slots, re-
quired to support services with continuous channel allocation at various bit rates (i.e. heavy and light CPRI)
and services with sub-wavelength time slot allocation (Ethernet flows).

5.7.2 Traffic adaptation at lower layers

In 5G environments supporting a large variety of protocols there is a clear need to support different traffic types,
e.g., continuous stream of data (e.g., CPRI flows for fronthaul services) and packet (e.g., Ethernet and IP
frames). As an example, streams coming from the wireless access domain will be converted to optical
frames/streams (Figure 61).

Figure 61: Example of streams coming from the wireless access domain to the optical transport do-

main.

5.7.3 Synchronization

The 5G-PICTURE architecture encompasses different technologies, which must be integrated across technol-
ogy domains, e.g. wireless/optical/packet. 5G-PICTURE will investigate novel approaches to deliver high ac-
curacy synchronisation in such heterogeneous environment. It is a task of WP3 to define and develop fast
Multi-Link/PHY interfaces to enable this level of integration. The different domains adopt different protocol
implementation and provide very diverse levels of requirements. WP4 synchronization functions will make use
of the programmable infrastructure building blocks and abstractions made available by WP3. Figure 62 depicts
the initial architecture of the expected implementation, where the interfacing boards at the edge, which inher-
ently should offer SyncE and 1588 support, will be able to offer synchronization capabilities that can be shared
by the different technology domains attached to it.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 73 of 80 04. Apr. 2018

1588
support

SyncE
support

Sync checker

Multi-PHY/Protocol Interfacing Board

WP4 algorithms/functions

Interface X

Interface Y

Optical Transport

Wireless Transport

Ethernet Transport

Interface Z

Figure 62: Multi-PHY/Multi-Protocol Interfacing solution enabling synchronization across technology
domains.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 74 of 80 04. Apr. 2018

6 Summary and Conclusions

This document has presented the initial definition of data plane programmability and infrastructure components
developed in WP3 of the H2020 5G-PICTURE project, providing a state-of-the-art overview of the program-
mability of 5G network elements, and describing the development platforms that are used by the project part-
ners to implement the new technologies of WP3.

In particular, the deliverable exposed the various target hardware platforms to develop the various program-
mable network platforms that will be developed and presented the initial functional definitions of the program-
mable platforms. The set of methodologies selected to abstract the programmable network platforms have
been individuated and discussed in section 4. Finally, section 5 illustrated the different hardware technologies
developed in 5G-PICTURE that provide basic building blocks of the 5G network architecture.

The deliverable proposes first specifications of those technologies. These specifications will be revised ac-
cording to the ongoing work among the three parallel tasks 3.1, 3.2 and 3.3 of WP3. The revised and definitive
detailed description of 5G-PICTURE data plane programmability and infrastructure components will be pro-
vided in November 2018 with deliverable D3.2.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 75 of 80 04. Apr. 2018

7 References

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J.

Turner. OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Computer Communication Re-

view, vol. 38, no. 2, pp. 69-74, 2008.

[2] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker. SNAP: Stateful Network-Wide

Abstractions for Packet Processing. Proc. of the 2016 ACM SIGCOMM conference, pp. 29-43.

[3] Open Networking Foundation. OpenFlow Switch Specification version 1.5.1 (protocol version 0x06).

ONF TS-025, Mar. 2015. https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-spec-

ifications/openflow/openflow-switch-v1.5.1.pdf

[4] P. Bosshart, et al. "P4: Programming protocol-independent packet processors." ACM SIGCOMM Com-

puter Communication Review 44.3 (2014): 87-95.

[5] R. Ozdag, R. Intel® Ethernet Switch FM6000 Series-Software Defined Networking. Available at

http://www.intel.com/content/www/us/en/ethernet-products/switch-silicon/ethernet-switch-fm6000-sdn-pa-

per.html

[6] H. Song. Protocol-oblivious forwarding: Unleash the power of SDN through a future-proof forwarding

plane. In Proc. of the 2nd ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, HotSDN

'13, 2013, pp. 127-132.

[7] The P4 language Consortium. The P4 Language Specification, version 1.0.2. March 2015. Available

at http://p4.org/wp-content/uploads/2015/04/p4-latest.pdf

[8] The P4 language Consortium. The P4_16 Language Specification, version 1.1.0. January 2016. Avail-

able at https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.pdf

[9] S. Yan et al., “Multilayer network analytics with SDN-based monitoring framework”, in IEEE Journal of

Optical Communications and Networking, vol. 9, 2017, pp.A271-A279

[10] A. Napoli et al., “Next Generation Elastic Optical Networks: the Vision of the European Research Pro-

ject IDEALIST”, IEEE Communications Magazine, vol. 53, no. 2, 2015

[11] N. Sambo et al, “Next Generation Sliceable Bandwidth Variable Transponders”, IEEE Communications

Magazine, vol. 53, no. 2, pp. 163-171, Mar. 2015

[12] A. Tzanakaki et al., “5G infrastructure supporting end-user and operational services: The 5G-XHaul

architectural perspective”, IEEE International Conference on Communications (ICC 2016), May 2016.

[13] M. Yang et al., “OpenRAN: a software-defined ran architecture via virtualization,” in ACM SIGCOMM

computer communication review, vol. 43, no. 4. ACM, 2013, pp. 549–550.

[14] I. F. Akyildiz et al., “Softair: A software defined networking architecture for 5g wireless systems,” Com-

puter Networks, vol. 85, pp. 1–18, 2015.

[15] A. Gudipati et al., “SoftRAN: Software defined radio access network,” in Proceedings of the second

ACM SIGCOMM workshop on Hot topics in software defined networking. ACM, 2013, pp. 25–30.

[16] T. Chen et al., “SoftMobile: control evolution for future heterogeneous mobile networks,” IEEE Wireless

Communications, vol. 21, no. 6, pp. 70–78, 2014.

[17] M. Bansal et al., “Openradio: a programmable wireless dataplane,” in Proceedings of the first workshop

on Hot topics in software defined networks. ACM, 2012, pp. 109–114.

[18] W. Wu et al., “Pran: Programmable radio access networks,” in Proceedings of the 13th ACM Workshop

on Hot Topics in Networks. ACM, 2014, p. 6.

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf
http://www.intel.com/content/www/us/en/ethernet-products/switch-silicon/ethernet-switch-fm6000-sdn-paper.html
http://www.intel.com/content/www/us/en/ethernet-products/switch-silicon/ethernet-switch-fm6000-sdn-paper.html
http://p4.org/wp-content/uploads/2015/04/p4-latest.pdf
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.pdf

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 76 of 80 04. Apr. 2018

[19] A. Gudipati et al., “Radiovisor: A slicing plane for radio access networks,” in Proceedings of the third

workshop on Hot topics in software defined networking. ACM, 2014, pp. 237–238.

[20] X. Foukas et al., “FlexRAN: A Flexible and Programmable Platform for Software-Defined Radio Access

Networks.” in ACM CoNEXT, 2016, pp. 427–441.

[21] A. Checko et al., “Cloud RAN for mobile networks A technology overview,” IEEE Communications

Surveys & Tutorials, vol. 17, no. 1, pp. 405–426, 2015.

[22] 5G-PICTURE, Deliverable D4.1: “State of the art and initial function design”, February 2018.

[23] 3GPP TR38.801 V14.0.0, Study on new radio access technology: Radio access architecture and in-

terfaces (Release 14).

[24] N. Nikaein, “Processing radio access network functions in the cloud: Critical issues and modeling,” in

Proceedings of the 6th International Workshop on Mobile Cloud Computing and Services, ACM, 2015, pp. 36–

43.

[25] N. Yu, et al., “Multi-resource allocation in cloud radio access networks,” in Proceedings of Communi-

cations (ICC), 2017 IEEE International Conference on. IEEE, 2017, pp. 1–6.

[26] V. Q. Rodriguez and F. Guillemin, “Towards the deployment of a fully centralized cloud-ran architec-

ture,” in Proceedings of the IEEE International Wireless Communications and Mobile Computing Conference

(IWCMC), 2017, pp. 1055–1060.

[27] N. Nikaein and C.-Y. Chang, “Slicing and orchestration in service-oriented RAN architecture,” IEEE

Software Defined Networks Newsletter, Dec. 2017.

[28] C.-Y. Chang, et al., “FlexCRAN: A Flexible Functional Split Framework over Ethernet Fronthaul in

Cloud-RAN,” in Proceedings of Communications (ICC), 2017 IEEE International Conference on. IEEE, 2017,

pp. 1–7.

[29] T. X. Tran, A. Younis and D. Pompili, "Understanding the Computational Requirements of Virtualized

Baseband Units Using a Programmable Cloud Radio Access Network Testbed," 2017 IEEE International Con-

ference on Autonomic Computing (ICAC), Columbus, OH, 2017, pp. 221-226.

[30] A. M. Mahmood, A. Al-Yasiri and O. Y. K. Alani, "A New Processing Approach for Reducing Compu-

tational Complexity in Cloud-RAN Mobile Networks," in IEEE Access, vol. PP, no. 99, pp. 1-1.

[31] T. Werthmann, H. Grob-Lipski and M. Proebster, “Multiplexing Gains Achieved in Pools of Baseband

Computation Units in 4G Cellular Networks”.

[32] C. Desset, et al., “Flexible power modeling of LTE base stations”.

[33] R. Miao, et al. "SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switching

ASICs," in Proc. ACM SIGCOMM, 2017.

[34] Z. Liu, et al. "One sketch to rule them all: Rethinking network flow monitoring with univmon", in Proc.

ACM SIGCOMM, 2016.

[35] P. Bosshart, et al. "Forwarding metamorphosis: Fast programmable match-action processing in hard-

ware for SDN." ACM SIGCOMM Computer Communication Review. Vol. 43. No. 4. ACM, 2013.

[36] G. Bianchi, et al. "Open Packet Processor: a programmable architecture for wire speed platform-inde-

pendent stateful in-network processing." arXiv preprint arXiv: 1605.01977 (2016).

[37] S. Pontarelli, et al. "Stateful OpenFlow: Hardware proof of concept," in Proc. of the IEEE 16th Interna-
tional Conference on. High Performance Switching and Routing (HPSR), 2015.

[38] D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G. Andersen. “Scalable, High Performance Ethernet
Forwarding with CuckooSwitch”. In Proceedings of the Ninth ACM Conference on Emerging Networking Ex-
periments and Technologies, ACM CoNEXT ’13, pages 97–108. ACM, 2013.

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 77 of 80 04. Apr. 2018

[39] D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis. Space efficient hash tables with worst case constant
access time. Theory of Computing Systems, 38(2):229–248, Feb 2005.

[40] C. Cascone, R. Bifulco, S. Pontarelli, A. Capone, “Relaxing state-access constraints in stateful pro-
grammable data planes”, to appear in ACM SIGCOMM CCR 2018.

[41] S. Pontarelli, M. Bonola, and G. Bianchi. "Smashing SDN" built-in" actions: Programmable data plane
packet manipulation in hardware." Network Softwarization (NetSoft), 2017 IEEE Conference on. IEEE, 2017.

[42] UE turbo decoding offloading to FPGA, [Online] https://gitlab.eurecom.fr/oai/openairinter-
face5g/wikis/how-to-offload-turbo-decode-to-fpga

[43] E. G. Larsson, O. Edfors, F. Tufvesson and T. L. Marzetta, "Massive MIMO for next generation wireless

systems," IEEE Communications Magazine, vol. 52, no. 2, pp. 186-195, February 2014.

[44] J. Bartelt et al. "5G transport network requirements for the next generation fronthaul interface." EUR-
ASIP Journal on Wireless Communications and Networking, vol. 2017, no. 1, pp. 89, 2017.

[45] N. Nikaein, et al. "OpenAirInterface: an open LTE network in a PC." Proceedings of the 20th annual
international conference on Mobile computing and networking. ACM, 2014.

[46] Small Cell Forum, “DOCUMENT 082.09.05, FAPI and nFAPI specifications”, May 2017.

[47] Implementation of Turbo-decoding LTE UE offloading, https://gitlab.eurecom.fr/oai/openairinter-
face5g/wikis/how-to-offload-turbo-decode-to-fpga

[48] 5G-XHaul deliverable D4.9, “Initial report on mm-Wave circuits and systems for high rate point to mul-
tipoint links”, December 2016.

[49] 5G-XHaul deliverable D4.10, “Final report on mm-Wave circuits and systems for high rate point to
multipoint links”, March 2018.

[50] S.-Y. Lien, S.-L. Shieh, Y. Huang, B. Su, Y.-L. Hsu, H-Y. Wei, “5G New Radio: Waveform, Frame
Structure, Multiple Access, and Initial Access”, IEEE Communications Magazine, vol. 55, no. 6, pp. 64-71,
June 2017.

[51] C. Kilinc, J.F. Monserrat, M.C. Filippou, N. Kuruvatti, A.A. Zaidi, I. Da Silva, M. Mezzavilla, “New Radio
5G User Plane Design Alternatives: One 5G Air Interface framework supporting multiple services and bands”,
IEEE Globecom Workshop, Washington DC, Feb. 2017.

[52] J. G. Andrews et al. ,”What Will 5G Be?”, IEEE Journal on Selected Areas in Communications, vol.
32, no. 6, pp. 1065-1082, June 2014

[53] T. S. Rappaport et al., ”Millimeter wave mobile communications for 5G cellular: It will work!”, IEEE
Access, vol. 1, pp. 335-349, 2013.

[54] S. Rangan, T.S. Rappaport, E. Erkip, “Millimeter-wave Cellular Wireless Networks: Potentials and
Challenges.” Proc. IEEE, vol. 102, no. 3, pp. 366-385, Mar. 2014.

[55] IEEE Standard 802.11ad,”Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications. Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band”.

[56] IEEE Standard 802.15.3c, ”Part 15.3: Wireless Medium Access Control and Physical Layer Specifica-
tions for High Rate Wireless Personal Area Networks (WPANs)”.

[57] 5G-XHaul deliverable D4.4, ???

[58] C. Sheldon et al., “Spatial multiplexing over a line-of-sight millimeter-wave MIMO link: A two-channel
hardware demonstration at 1.2Gbps over 41m range,” in 38th European Microwave Conference, October 2008

[59] X. Song, C. Jans, L. Landau, D. Cvetkovski and G. Fettweis, "A 60GHz LOS MIMO Backhaul Design
Combining Spatial Multiplexing and Beamforming for a 100Gbps Throughput," 2015 IEEE Global Communi-
cations Conference (GLOBECOM), San Diego, CA, 2015, pp. 1-6.

[60] 5G-XHaul deliverable D4.2 “Optical Fronthauling Solution”, October 2017.

https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/how-to-offload-turbo-decode-to-fpga
https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/how-to-offload-turbo-decode-to-fpga
https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/how-to-offload-turbo-decode-to-fpga
https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/how-to-offload-turbo-decode-to-fpga

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 78 of 80 04. Apr. 2018

8 Acronyms

Acronym Description

AADU Active Antenna Distributed Unit

ADC Analogue-to-Digital Converter

AoA Angle of Arrival

AoD Angle of Departure

AP Access Point

API Application Programming Interface

BBU Baseband Unit

BH Backhaul

BS Base Station

BVT Bandwidth Variable Transponder

BWT Blu Wireless Technology

CAN Controller Area Network

CAPEX CAPital EXpenditure

CP Control Plane

CU Centralized Unit

C-RAN Cloud Radio Access Network

DAC Digital-to-Analogue Converter

DA-RAN Dis-Aggregated Radio Access Network

DCB Data Center Bridging

DDOS Distributed Denial of Service

DL Download

D-RAN Distributed Radio Access Network

DU Distributed Unit

ECN Explicit Congestion Notification

EDP European Deployment Plan

EFSM Extended Finite State Machine

FDD Frequency division Duplexing

FH Fronthaul

FMC FPGA Mezzanine Card

FPGA Field Programable Gate Array

FSM Finite State Machine

GPGD gap-detection scheme

GPP General Purpose Processor

GPU Graphics Processing Unit

HARQ Hybrid Automatic Repeat Request

HIL Hardware-In-the-Loop

HW Hardware

HWA Hardware-accelerated

HYDRA Hybrid Defined Radio Architecture

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 79 of 80 04. Apr. 2018

IEC International Electro-technical Commission

IEEE Institute of Electrical and Electronic Engineers

IHON Integrated Hybrid Optical Networks

IHP Innovations for High Performance microelectronics

IoT Internet of Things

ISU Interface Sub-Unit

ITU International telecommunication Union

LAA Large Aperture Array

LTE Long Term Evolution

LTE-A Long Term Evolution Advanced

MAC Media Access Control

mDC micro Data Center

MEC Multi-access Edge Computing

MIMO Multiple-input and multiple-output

MME Mobility Management Entity

MPI Multi PHY Interfaces / Multi-Protocol Interfaces

MU Multiple-Unit

NB-IoT Narrow Band Internet of Things

NFV Network Function Virtualisation

OAI OpenAirInterface

OBSAI Open Base Station Architecture Initiative

OLT Optical Line Terminal

ONU Optical Network Unit

OPEX OPerational EXpenditure

OPP Open Packet Processor

PDCP Packet Data Convergence Protocol

PDV Packet Delay Variation

PHY Physical

PMOD Peripheral Module

PMP Packet Manipulator Processor

PNF Physical Network Functions

POE Power over Ethernet

PON Passive Optical Networks

PPP Public Private Partnership

PRB physical resource block

P2MP Point-to-Multipoint

PTP Precision Time Protocol

QoS Quality of Service

RAN Radio Access Network

RISC Reduced Instruction Set Computer

RPC Remote Procedure Calls

RRH Remote Radio Head

5G-PICTURE Deliverable

H2020-ICT-2016-2017-762057 Page 80 of 80 04. Apr. 2018

RSRP Reference Signal Receive Power

RSU Radio Sub-Unit

RU Radio Unit

SAI Switch Abstraction Interface

SBC Single-Board Computer

SDN Software Defined Networks

SerDes Serializer/Deserializer

SIL server instrumentation library

SINR signal-to-interference and noise ratio

SON Self-Organizing Network

SO-RAN service-oriented RAN

SW Software

TCP Transmission Control Protocol

TSN Time Sensitive Network

TSON Time Shared Optical Network

TTI transmission time interval

UDP User Datagram Protocol

UP Upload

vBBU Virtual Baseband Unit

VLIW Very Long Instruction word

VLAN Virtual Local Area Network

VNF Virtual network function

WDM-PON Wavelength Division Multiplexing Passive Optical Network

