
Demo: Service Function Chaining Across OpenStack and
Kubernetes Domains

Hadi Razzaghi Kouchaksaraei
Computer Network Group

Paderborn University
hadi.razzaghi@uni-paderborn.de

Holger Karl
Computer Network Group

Paderborn University
holger.karl@uni-paderborn.de

ABSTRACT
Remarkable advantages of Containers (CNs) over Virtual Machines
(VMs) such as lower overhead and faster startup has gained the
attention of Communication Service Providers (CSPs) as using CNs
for providing Virtual Network Functions (VNFs) can save costs
while increasing the service agility. However, as it is not feasible to
realise all types of VNFs in CNs, the coexistence of VMs and CNs
is proposed. To put VMs and CNs together, an orchestration frame-
work that can chain services across distributed and heterogeneous
domains is required. To this end, we implemented a framework by
extending and consolidating state-of-the-art tools and technologies
originated from Network Function Virtualization (NFV), Software-
defined Networking (SDN) and cloud computing environments.
This framework chains services provisioned across Kubernetes and
OpenStack domains. During the demo, we deploy a service con-
sist of CN- and VM-based VNFs to demonstrate different features
provided by our framework.

CCS CONCEPTS
• Networks→ Cloud computing; Network management.

KEYWORDS
Network Function Virtualization, Software-defined Networking,
Cloud Computing, service orchestration, OpenStack, Kubernetes
ACM Reference Format:
Hadi Razzaghi Kouchaksaraei andHolger Karl. 2019. Demo: Service Function
Chaining Across OpenStack and Kubernetes Domains. In DEBS ’19: The
13th ACM International Conference on Distributed and Event-based Systems
(DEBS ’19), June 24–28, 2019, Darmstadt, Germany. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3328905.3332505

1 INTRODUCTION
Bringing Containers (CNs) to Network Function Virtualization
(NFV) obtains momentum. Containerization is a popular virtualiza-
tion technique as it provides remarkable advantages over Virtual
Machines (VMs) such as lower overhead, faster startup, less mainte-
nance, and easier deployment. These benefits help Communication
Service Providers (CSPs) to reduce their costs and provide opera-
tional efficiency and service agility. Although the results of some

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DEBS ’19, June 24–28, 2019, Darmstadt, Germany
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6794-3/19/06.
https://doi.org/10.1145/3328905.3332505

studies show the feasibility of containerising some VNFs [3], it is
still not feasible to containerise all VNFs due to the immaturity of
CNs on different aspects such as security and fault isolation [13].
In this situation, coexistence of VMs and CNs is proposed [7]; this
can combine VMs’ and CNs’ advantages and provide benefits such
as reduced cost and total latency of NFV services compared to the
case that only VMs are used to host VNFs.

Despite all the benefits that can be gained by integrating CNs
into NFV environments, management and orchestration challenges
hinder the use of CN-based VNFs. On the one hand, current NFV or-
chestrators such as Open Source MANO (OSM) [10] or SONATA [4]
do not support orchestration of CN-based VNFs; on the other hand,
CN orchestration tools such as Kubernetes (k8)1 do not support
NFV networking requirements such as network isolation and fixed
CN IP.

This lacking support of networking requirements jeopardizes a
key task in NFV, namely the chaining together of functions into
a service. To chain network functions, NFV orchestrator, usually
with the help of a Software-Defined Networking (SDN) controller,
sets up the network in a way that all incoming flows to a network
service go through a specific order of VNFs. Although there are
service-chaining solutions for VM-based VNF in OpenStack2 [11]
(i.e., a cloud management system for VMs), CN orchestrators like
K8 are still incapable of providing service chaining. One of the
challenges here is that IP addresses are dynamically allocated to
CNs by K8 and can change multiple times during the lifecycle of
CNs. This makes it difficult to chain CNs with other VNFs located
outside K8 domains.

This paper contributes to service chaining across heterogeneous,
VM- and CN-based VNFs that are managed by OpenStack and K8,
respectively. To this end, we present Pishahang: a framework built
upon state-of-the-art NFV, SDN, and Cloud computingmanagement
and orchestration tools and technologies to provide orchestration
for services deployed across multiple technological (VMs/CNs) do-
mains. The remainder of the paper is as follows. In Section 2, we
review related work. Pishahang is presented in Section 3 and Sec-
tion 4 describes the demonstration plan. Finally, in Section 5, we
conclude the paper.

2 RELATEDWORK
The European Telecommunications Standards Institute (ETSI) NFV
Group has proposed a specification of the NFV MANO framework
to manage the lifecycle of VNFs and orchestrate network services.
Based on these specifications, MANO frameworks such as OSM and
SONATA have been developed. Irrespective of all their pros and

1https://kubernetes.io/
2https://www.openstack.org/

https://doi.org/10.1145/3328905.3332505
https://doi.org/10.1145/3328905.3332505

DEBS ’19, June 24–28, 2019, Darmstadt, Germany H. Razzaghi Kouchaksaraei and H. Karl

cons, none of them can manage or orchestrate network services
that consist of CN-based VNF.

There are also management and orchestration tools and frame-
works in the IT/Cloud environment, where CNs are already in use,
such as OpenStack, K8, Terraform3, and Cloudify4. OpenStack and
K8 are more cloud managers than NFV mangers. They cannot meet
the NFV management requirements (e.g., multi-domain orchestra-
tion) and they are used as Virtual Infrastructure Manager (VIM) in
NFV. Terraform is a tool that sits on top of K8 and OpenStack and
provides multi-cloud [12] functionalities for cloud service providers
and allows them to deploy cloud services on multiple cloud infras-
tructures such as AWS and Google Cloud. But, like other cloud
orchestrators, Terraform also has been implemented for the cloud
environment and does not fit into NFV environments as it cannot
provide the requirements of NFV services (e.g., service chaining).
Cloudify has been extended to support NFV requirements. It utilises
ARIA [1] to orchestrate VNFs and provides a plugin that allows
operators to deploy CNs on a K8 cluster. Cloudify supports hybrid
VM/CN VNFs where CN-based VNFs are deployed on VMs. How-
ever, it does not support chaining of network services where CN-
and VM-based VNFs are deployed across CN and VM domains.

As mentioned in Section 1, networking-related issues of CN
hinder the integration of CNs into an NFV ecosystem. In this regard,
Intel proposed and implemented new services [8] for K8 that can
solve a subset of the problem. Examples are the Multus Container
Network Interface (CNI) plugin [9] that allows CNs to be connected
to more than one network interface (i.e., it is needed for VNFs to
provide redundancy of the network and separate data plane from
control plane) and CPU Core Manager [2] that manages pools of
CPU cores and constrains workloads to specific CPU cores within
those pools (a VNF-desirable feature that was missing in K8 [8]).
MetalLB5 is a Google project that provides a network load balancer
implementation for bare-metal clusters. Its services (like address
allocation) allow providing fixed IP addresses for CNs that can be
used for chaining services.

Despite having all these tools and technologies originated from
different technological environments (NFV, Cloud), there has not
been any orchestration tool that can chain CN- and VM-based VNFs
across different technological domains.

3 PISHAHANG
Pishahang is a multi-domain orchestrator that has been initially in-
troduced in [5]. While Pishahang on its initial release could support
the joint deployment of VM- and CN-based VNFs on infrastructures
managed by OpenStack and K8, it was missing the dynamic service
chaining support across CN and VM domains. In this work, we
extended Pishahang to support the missing feature. Pishahang is
built on top of the SONATA MANO framework. SONATA has been
selected as the base MANO framework over its competitors mainly
because of two reasons: (i) SONATA follows a microservice-based
architecture that allows new functionalities to be added simply by
creating and integrating a newmicroservice (i.e., this makes extend-
ing the MANO system much easier) and (ii) it also allows network

3https://www.terraform.io/
4https://cloudify.co/
5https://metallb.universe.tf/

services to bring their own orchestration code along with other
service artefacts by the concept of Service-Specific Management [6]
which increases the flexibility of the MANO framework to meet
the service requirements that are not pre-supported.

Pishahang Orchestrator

OpenStack Adaptor

OpenStack

Kubernetes Adaptor

Kubernetes

Compute ResourcesCompute Resources

SONATA GUI SONATA BSS

Network Resources

SDN controller Adaptor

SDN controller

Figure 1: Pishahang high-level architecture

Fig. 1 shows the high-level architecture of Pishahang. To sup-
port service function chaining, first, we extended the descriptors
schema that allows us to describe chaining-related requirements.
For example, the schema, on the service level, allows defining a
service graph to be used for chaining across heterogeneous do-
mains. Fig. 2 illustrates an example of a service descriptor. In the
MANO framework, we extended the K8 adaptor to provide CN’s
networking metadata to the orchestrator. This Terraform-based
adaptor enables Pishahang to instantiate, start, update, and delete
CN-based VNFs. For VM-based network functions, the SONATA
adaptor is used to access OpenStack APIs. To chain services, the
third adaptor has been developed; it is responsible for connecting
the Pishahang orchestrator to an SDN controller. The SDN adaptor
translates the service graphs included in the descriptors to a chain
of MAC and IP addresses to be sent to the SDN controller. The
SDN controller then converts the chain to forwarding rules and
installs them on switches’ forwarding tables. On top of all adaptors,
the Pishahang orchestrator carries out intra-domain management
tasks and orchestrates the service as a whole. On the K8 side, we
employed MetalLB which allows K8 to allocate fixed IP addresses
to CNs on bare-metal clusters. These IP addresses can be accessed
externally and enable the Pishahang orchestrator to connect VM-
based VNFs to CN-based VNFs and chain services across VM and
CN domains.

To avoid reinventing the wheel, we used SONATA’s Graphi-
cal User Interface (GUI) and Business Support System (BSS) to
on-board descriptors and instantiate services, respectively. These
components have been slightly extended to make them compatible
with Pishahang needs.

Demo: Service Function Chaining Across OpenStack and Kubernetes Domains DEBS ’19, June 24–28, 2019, Darmstadt, Germany

Figure 2: An example of network service descriptor

4 DEMONSTRATION
To showcase service chaining across OpenStack and K8, we consider
a scenario in which a network service consisting of CN- and VM-
based VNFs will be deployed using Pishahang. In the following
sections, we explain the implemented network service, the demo
scenario, and the demonstration steps in detail.

4.1 Demo network service
Fig. 3 shows the demo network service and its constituent VNFs. The
service consists of two VNFs, one VM-based VNF, which forwards
ICMP ping requests to the next hop in the service chain, and one
CN-based VNF, which does the same. As shown in Fig. 3, the VM-
based forwarder will be connected to a source (SRC) host and the
CN-based forwarder will be connected to a destination (DST) host
to show Pishahang’s capability of end-to-end service chaining. SRC
and DST are physical hosts located in different domains. Although
this is a simple network service, it allows us to fully validate the
capability of Pishahang to chain services across K8 and OpenStack
domains. Using a more complicated VNF such as Load balancer
or Deep Packet Inspection (DPI) would validate the chaining of
VNFs across different domains no better. Using this service, the
VNF chaining validation will be performed by the demo scenario
explained below.

CN-based
Forwarder

VM-based
Forwarder

OpenStack Domain Kubernetes Domain

SRC DST

Figure 3: Implemented network service

4.2 Demo Scenario
To validate Pishahang’s capability to chain services across hetero-
geneous domains, first, we deploy the demo service and show that
all ICMP ping requests sent from SRC to DST will be redirected to
the VM-based forwarder, from there to the CN-based forwarder,
and finally, the packets will be forwarded to DST. Next, we stop one
of the VNFs in the chain and show that the packets do not reach
DST anymore.

4.3 Demonstration Steps
The following steps will be taken during the demonstration.

(1) Demonstration of the demo setup.
(2) Demonstration of the demo service descriptors (NS and VNF

descriptors).
(3) On-boarding the demo network service.
(4) Deployment and management of the demo network service

across OpenStack and K8 domains.
(5) Demonstration of packet steering across VNFs.
(6) Stopping one of the VNFs.
(7) Demonstration of halt in packet steering across VNFs.

Pishahang Orchestrator

GUI BSS

CN-based
Forwarder

VM-based
Forwarder

Transport
Domain

OpenStack
Domain

Kubernetes
Domain

SRC DST

Figure 4: Demo setup overview

Fig. 4 shows an overview of the demo setup. There is also a
YouTube video available that shows the planned demo6. Our imple-
mentation source code is also available at GitHub7.

5 CONCLUSION
The framework demonstrated in this paper allows bringing CNs
to NFV by managing, orchestrating and chaining network services
consisting of VNFs realised by CN and VM virtualization techniques
on infrastructuresmanaged by K8 andOpenStack, respectively. This
is enabled by combining and extending state-of-the-art Cloud Com-
puting, SDN, and NFV tools and technologies offering advantages
such as reusability improvement and reducing maintenance over-
head. The implementation code of Pishahang is open-source and
freely available.

6https://youtu.be/ceebA-BaoyM
7https://github.com/CN-UPB/Pishahang

https://youtu.be/ceebA-BaoyM
https://github.com/CN-UPB/Pishahang

DEBS ’19, June 24–28, 2019, Darmstadt, Germany H. Razzaghi Kouchaksaraei and H. Karl

ACKNOWLEDGMENTS
This work has been partially supported by the 5G-PICTURE project,
funded by the European Commission under Grant number 762057
through the Horizon 2020 and 5G-PPP programs and the German
Research Foundation in the Collaborative Research Centre On-The-
Fly Computing (SFB 901).

REFERENCES
[1] ARIA [n. d.]. Apache ARIA TOSCA Orchestration Engine. URL: http://dpdk.org/

[retrieved: January 2018].
[2] CPU Manager [n. d.]. CPU Core Manager for Kubernetes. URL: https://github.

com/intel/CPU-Manager-for-Kubernetes [retrieved: February 2019].
[3] R. Cziva and D. P. Pezaros. 2017. Container Network Functions: Bringing NFV

to the Network Edge. IEEE Communications Magazine 55, 6 (June 2017), 24–31.
https://doi.org/10.1109/MCOM.2017.1601039

[4] Sevil Dräxler et al. 2017. SONATA: Service Programming and Orchestration for
Virtualized Software Networks. In IEEE International Conference on Communica-
tions Workshops (ICC Workshops). IEEE, 973–978.

[5] H. R. Kouchaksaraei, T. Dierich, and H. Karl. 2018. Pishahang: Joint Orchestration
of Network Function Chains and Distributed Cloud Applications. In 2018 4th
IEEE Conference on Network Softwarization and Workshops (NetSoft). 344–346.
https://doi.org/10.1109/NETSOFT.2018.8460134

[6] H. R. Kouchaksaraei, S. DrÃďxler, M. Peuster, and H. Karl. 2018. Programmable
and Flexible Management and Orchestration of Virtualized Network Functions.
In 2018 European Conference on Networks and Communications (EuCNC). 1–9.
https://doi.org/10.1109/EuCNC.2018.8442528

[7] H. R. Kouchaksaraei and H. Karl. 2018. Joint Orchestration of Cloud-Based
Microservices and Virtual Network Functions. In Cloud Computing 2018 : The
Ninth International Conference on Cloud Computing, GRIDs, and Virtualization.
153–154.

[8] M Siddiqui and T Radi and L Obuchowicz, P Rutkowski. 2017. Enabling New
Features with Kubernetes for NFV. White Paper. Intel.

[9] Multus [n. d.]. Multus Container Network Interface (CNI). URL: https://github.
com/intel/multus-cni [retrieved: February 2019].

[10] OSM. 2018. OSM Release Four a Technical Overview. Group Specification. ETSI.
[11] OSSC [n. d.]. Service Function Chaining Extension for OpenStack Network-

ing. URL: https://docs.openstack.org/networking-sfc/latest/ [retrieved: February
2019].

[12] Dana Petcu. 2013. Multi-Cloud: Expectations and Current Approaches. In Pro-
ceedings of the international workshop on Multi-cloud applications and federated
clouds. ACM, 1–6.

[13] Csaba Rotter, Lóránt Farkas, Gábor Nyíri, Gergely Csatári, László Jánosi, and
Róbert Springer. 2016. Using Linux containers in telecom applications. In 19th
Conference on Innovation in Clouds, Internet and Networks (ICIN). 234–241.

A APPENDIX
A.1 Demonstration Requirements
The demowill be executed remotely on servers located at Paderborn
University. It requires a power outlet for a laptop, proper Internet
connection, and two large screens to show the dashboards and VNF
terminals. A wall or stand to mount a poster will help to describe
the demo to the audience.

http://dpdk.org/
https://github.com/intel/CPU-Manager-for-Kubernetes
https://github.com/intel/CPU-Manager-for-Kubernetes
https://doi.org/10.1109/MCOM.2017.1601039
https://doi.org/10.1109/NETSOFT.2018.8460134
https://doi.org/10.1109/EuCNC.2018.8442528
https://github.com/intel/multus-cni
https://github.com/intel/multus-cni
https://docs.openstack.org/networking-sfc/latest/

	Abstract
	1 Introduction
	2 Related Work
	3 Pishahang
	4 Demonstration
	4.1 Demo network service
	4.2 Demo Scenario
	4.3 Demonstration Steps

	5 Conclusion
	Acknowledgments
	References
	A appendix
	A.1 Demonstration Requirements

